線形漸化式用
(fps/linearly-recurrent-sequence.hpp)
- View this file on GitHub
- Last update: 2025-10-21 21:13:36+09:00
- Include:
#include "fps/linearly-recurrent-sequence.hpp"
線形漸化式に関するライブラリ.
-
a, cを入力に含むとき,初項が $a_0,\dots,a_{d-1}$ で漸化式 $a_i=\sum_{j=1}^{d}c_{j-1}a_{i-j}$ で定まる数列. -
aのみを入力に含むとき,Berlekamp-Massey アルゴリズムで漸化式を推定した上で計算する. -
n, kを入力に含むとき,$a_n,a_{n+1},\dots,a_{n+k-1}$ を計算する. -
nのみを入力に含むとき,$a_n$ のみを計算する.
連続する項
https://noshi91.hatenablog.com/entry/2023/06/04/233447
$\deg P(x)\lt d,\deg Q(x)=d,[x^0]Q(x)\neq 0$ とする.
次を満たす $S(x)$ を求められればよい. \(\frac{P(x)}{Q(x)}=R(x)+x^n\cdot\frac{S(x)}{Q(x)},\quad \deg R(x)\lt n,\deg S(x)\lt d\)
$P(x)=Q(x)R(x)+x^nS(x)$ であるから $S(x)=x^{-n}P(x)\bmod Q(x)$ と表せる.
$\frac{1}{Q(x)}$ の $x^n$ から $x^{n+d-1}$ の係数を求めれば $P(x)$ のときの $S(x)$,すなわち $x^{-n}\bmod Q(x)$ が求められる.
inverse-shift.hpp で実装.
実質的に $\deg P(x)\geq\deg Q(x)$ であるようなケースに注意する.
例えば $a=(0,0,1,1,1,1,\dots)$ のようなケースに Berlekamp-Massey を用いると $q=(1,-1,0,0)$ が得られる.
このような場合,$q$ の末尾の $0$ の個数分 $a$ の先頭を取り除けばよい.
Depends on
Berlekamp-Massey
(fps/berlekamp-massey.hpp)
Bostan-Mori
(fps/bostan-mori.hpp)
fps/formal-power-series.hpp
Inverse の次数シフト
(fps/inverse-shift.hpp)
Verified with
verify/fps/LC_consecutive_terms_of_linear_recurrent_sequence.test.cpp
verify/fps/LC_kth_term_of_linearly_recurrent_sequence.test.cpp
Code
#pragma
#include "fps/formal-power-series.hpp"
#include "fps/berlekamp-massey.hpp"
#include "fps/bostan-mori.hpp"
#include "fps/inverse-shift.hpp"
// a[i]=sum[j=1~d]c[j]a[i-j], i>=d
// find a[n]
template <class mint>
mint LinearyRecurrentSequence(FormalPowerSeries<mint> a, FormalPowerSeries<mint> c, long long n) {
assert(a.size() == c.size());
if (n < a.size()) return a[n];
while (!c.empty() && c.back() == 0) c.pop_back();
if (c.size() < a.size()) {
int z = a.size() - c.size();
n -= z;
a.erase(a.begin(), a.begin() + z);
}
int d = c.size();
FormalPowerSeries<mint> q(d + 1);
q[0] = 1;
for (int i = 0; i < d; i++) q[i + 1] = -c[i];
auto p = (a * q).pre(d);
return BostanMori(p, q, n);
}
// a[i]=sum[j=1~d]c[j]a[i-j], i>=d
// find a[n],a[n+1],...,a[n+k-1]
template <class mint>
FormalPowerSeries<mint> LinearyRecurrentSequence(FormalPowerSeries<mint> a, FormalPowerSeries<mint> c, long long n, int k) {
assert(a.size() == c.size());
if (n + k < a.size()) {
a >>= (int)n;
return a.pre(k);
}
while (!c.empty() && c.back() == 0) c.pop_back();
int d = c.size();
FormalPowerSeries<mint> ret{};
if (c.size() < a.size()) {
int z = a.size() - c.size();
if (n < z) {
ret.reserve(k);
for (int i = n; i < z; i++) ret.push_back(a[i]);
}
n -= z;
if (n < 0) {
k += n;
n = 0;
}
a >>= z;
}
FormalPowerSeries<mint> q(d + 1);
q[0] = 1;
for (int i = 0; i < d; i++) q[i + 1] = -c[i];
auto p = (a * q).pre(d);
if (n < a.size()) {
p *= q.inv(n + k);
p >>= n;
} else {
p *= (InverseShift(q, n) * q).pre(d);
p %= q;
p *= q.inv(k);
}
p.resize(k);
if (ret.empty()) {
return p;
} else {
for (auto v : p) ret.push_back(v);
return ret;
}
}
template <class mint>
mint LinearyRecurrentSequence(FormalPowerSeries<mint> a, long long n) {
if (n < a.size()) return a[n];
auto b = BerlekampMassey(a);
int d = b.size() - 1;
a.resize(d);
int z = 0;
while (b.back() == 0) b.pop_back(), z++;
a >>= z;
n -= z;
d -= z;
return BostanMori((a * b).pre(b.size()), b, n);
}
/**
* @brief 線形漸化式用
* @docs docs/fps/linearly-recurrent-sequence.md
*/#line 1 "fps/linearly-recurrent-sequence.hpp"
#pragma
#line 2 "fps/formal-power-series.hpp"
template <class mint>
struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using FPS = FormalPowerSeries;
FPS &operator+=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
FPS &operator+=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
FPS &operator-=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
return *this;
}
FPS &operator-=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
FPS &operator*=(const mint &v) {
for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
return *this;
}
FPS &operator/=(const FPS &r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
if ((int)r.size() <= 64) {
FPS f(*this), g(r);
g.shrink();
mint coeff = g.at(g.size() - 1).inv();
for (auto &x : g) x *= coeff;
int deg = (int)f.size() - (int)g.size() + 1;
int gs = g.size();
FPS quo(deg);
for (int i = deg - 1; i >= 0; i--) {
quo[i] = f[i + gs - 1];
for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
}
*this = quo * coeff;
this->resize(n, mint(0));
return *this;
}
return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
}
FPS &operator%=(const FPS &r) {
*this -= *this / r * r;
shrink();
return *this;
}
FPS operator+(const FPS &r) const { return FPS(*this) += r; }
FPS operator+(const mint &v) const { return FPS(*this) += v; }
FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
FPS operator-(const mint &v) const { return FPS(*this) -= v; }
FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
FPS operator*(const mint &v) const { return FPS(*this) *= v; }
FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
FPS operator-() const {
FPS ret(this->size());
for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
void shrink() {
while (this->size() && this->back() == mint(0)) this->pop_back();
}
FPS rev() const {
FPS ret(*this);
reverse(begin(ret), end(ret));
return ret;
}
FPS dot(FPS r) const {
FPS ret(min(this->size(), r.size()));
for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
FPS pre(int sz) const {
return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));
}
FPS operator>>=(int sz) {
assert(sz >= 0);
if ((int)this->size() <= sz) return {};
this->erase(this->begin(), this->begin() + sz);
return *this;
}
FPS operator>>(int sz) const {
if ((int)this->size() <= sz) return {};
FPS ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
FPS operator<<=(int sz) {
assert(sz >= 0);
this->insert(this->begin(), sz, mint(0));
return *this;
}
FPS operator<<(int sz) const {
FPS ret(*this);
ret.insert(ret.begin(), sz, mint(0));
return ret;
}
FPS diff() const {
const int n = (int)this->size();
FPS ret(max(0, n - 1));
mint one(1), coeff(1);
for (int i = 1; i < n; i++) {
ret[i - 1] = (*this)[i] * coeff;
coeff += one;
}
return ret;
}
FPS integral() const {
const int n = (int)this->size();
FPS ret(n + 1);
ret[0] = mint(0);
if (n > 0) ret[1] = mint(1);
auto mod = mint::get_mod();
for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
return ret;
}
mint eval(mint x) const {
mint r = 0, w = 1;
for (auto &v : *this) r += w * v, w *= x;
return r;
}
FPS log(int deg = -1) const {
assert((*this)[0] == mint(1));
if (deg == -1) deg = (int)this->size();
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
FPS pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
if (k == 0) {
FPS ret(deg);
if (deg) ret[0] = 1;
return ret;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != mint(0)) {
mint rev = mint(1) / (*this)[i];
FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
ret *= (*this)[i].pow(k);
ret = (ret << (i * k)).pre(deg);
if ((int)ret.size() < deg) ret.resize(deg, mint(0));
return ret;
}
if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
}
return FPS(deg, mint(0));
}
static void *ntt_ptr;
static void set_ntt();
FPS &operator*=(const FPS &r);
FPS middle_product(const FPS &r) const;
void ntt();
void intt();
void ntt_doubling();
static int ntt_root();
FPS inv(int deg = -1) const;
FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;
#line 3 "fps/berlekamp-massey.hpp"
template <class mint>
FormalPowerSeries<mint> BerlekampMassey(const FormalPowerSeries<mint>& a) {
int n = a.size();
FormalPowerSeries<mint> b, c;
b.reserve(n + 1), c.reserve(n + 1);
b.push_back(1), c.push_back(1);
mint y = 1;
for (int k = 0; k < n; k++) {
mint x = 0;
for (int i = 0; i < c.size(); i++) x += c[i] * a[k - i];
b.insert(b.begin(), 0);
if (x == 0) continue;
mint v = x / y;
if (b.size() > c.size()) {
for (int i = 0; i < b.size(); i++) b[i] *= -v;
for (int i = 0; i < c.size(); i++) b[i] += c[i];
swap(b, c);
y = x;
} else {
for (int i = 0; i < b.size(); i++) c[i] -= v * b[i];
}
}
return c;
}
/**
* @brief Berlekamp-Massey
* @docs docs/fps/berlekamp-massey.md
*/
#line 3 "fps/bostan-mori.hpp"
// [x^n]f(x)/g(x)
template <class mint>
mint BostanMori(FormalPowerSeries<mint> f, FormalPowerSeries<mint> g, long long n) {
g.shrink();
mint ret = 0;
if (f.size() >= g.size()) {
auto q = f / g;
if (n < q.size()) ret += q[n];
f -= q * g;
f.shrink();
}
if (f.empty()) return ret;
FormalPowerSeries<mint>::set_ntt();
if (!FormalPowerSeries<mint>::ntt_ptr) {
f.resize(g.size() - 1);
for (; n > 0; n >>= 1) {
auto g1 = g;
for (int i = 1; i < g1.size(); i += 2) g1[i] = -g1[i];
auto p = f * g1, q = g * g1;
if (n & 1) {
for (int i = 0; i < f.size(); i++) f[i] = p[(i << 1) | 1];
} else {
for (int i = 0; i < f.size(); i++) f[i] = p[i << 1];
}
for (int i = 0; i < g.size(); i++) g[i] = q[i << 1];
}
return ret + f[0] / g[0];
} else {
int m = 1, log = 0;
while (m < g.size()) m <<= 1, log++;
mint wi = mint(FormalPowerSeries<mint>::ntt_root()).inv().pow((mint::get_mod() - 1) >> (log + 1));
vector<int> rev(m);
for (int i = 0; i < rev.size(); i++) rev[i] = (rev[i / 2] / 2) | ((i & 1) << (log - 1));
vector<mint> pow(m, 1);
for (int i = 1; i < m; i++) pow[rev[i]] = pow[rev[i - 1]] * wi;
f.resize(m), g.resize(m);
f.ntt(), g.ntt();
mint inv2 = mint(2).inv();
for (; n >= m; n >>= 1) {
f.ntt_doubling(), g.ntt_doubling();
if (n & 1) {
for (int i = 0; i < m; i++) f[i] = (f[i << 1] * g[(i << 1) | 1] - f[(i << 1) | 1] * g[i << 1]) * inv2 * pow[i];
} else {
for (int i = 0; i < m; i++) f[i] = (f[i << 1] * g[(i << 1) | 1] + f[(i << 1) | 1] * g[i << 1]) * inv2;
}
for (int i = 0; i < m; i++) g[i] = g[i << 1] * g[(i << 1) | 1];
f.resize(m), g.resize(m);
}
f.intt(), g.intt();
return ret + (f * g.inv())[n];
}
}
/**
* @brief Bostan-Mori
* @docs docs/fps/bostan-mori.md
*/
#line 3 "fps/inverse-shift.hpp"
// [x^n,...,x^{n+k-1}]1/f(x)
template <class mint>
FormalPowerSeries<mint> InverseShift(FormalPowerSeries<mint> f, long long n, int k = -1) {
using fps = FormalPowerSeries<mint>;
assert(f[0] != 0);
if (k == -1) k = f.size();
int m = 1;
while (m < k) m <<= 1;
int log = __builtin_ctz((unsigned int)m);
mint w = mint(fps::ntt_root()).pow((mint::get_mod() - 1) >> (log + 1));
mint wi = w.inv();
vector<int> rev(m);
for (int i = 0; i < rev.size(); i++) rev[i] = (rev[i / 2] / 2) | ((i & 1) << (log - 1));
mint inv2 = mint(2).inv();
f.resize(m);
f.ntt();
auto rec = [&](auto& rec, long long n) -> void {
if (n < m) {
f.intt();
f = f.inv(n + m);
f >>= n;
f.ntt();
return;
}
f.ntt_doubling();
assert(f.size() == 2 * m);
auto f1 = f;
for (int i = 0; i < m; i++) swap(f1[i << 1], f1[(i << 1) | 1]);
for (int i = 0; i < m; i++) f[i] = f[i << 1] * f[(i << 1) | 1];
f.resize(m);
rec(rec, (n - m + 1) / 2);
if (((n - m) & 1) == 0) {
f.resize(2 * m);
for (int i = m - 1; i >= 0; i--) {
f[(i << 1) | 1] = f[i];
f[i << 1] = f[i];
}
} else {
mint p = 1;
for (auto i : rev) f[i] *= p, p *= w;
f.resize(2 * m);
for (int i = m - 1; i >= 0; i--) {
f[(i << 1) | 1] = -f[i];
f[i << 1] = f[i];
}
}
for (int i = 0; i < 2 * m; i++) f[i] *= f1[i];
auto odd = fps(f.begin() + m, f.end());
odd.intt();
mint p = 1;
for (int i = 0; i < m; i++) odd[i] *= p, p *= wi;
odd.ntt();
f.resize(m);
for (int i = 0; i < m; i++) f[i] = (f[i] - odd[i]) * inv2;
};
rec(rec, n);
f.intt();
f.resize(k);
return f;
}
/**
* @brief Inverse の次数シフト
* @docs docs/fps/inverse-shift.md
*/
#line 6 "fps/linearly-recurrent-sequence.hpp"
// a[i]=sum[j=1~d]c[j]a[i-j], i>=d
// find a[n]
template <class mint>
mint LinearyRecurrentSequence(FormalPowerSeries<mint> a, FormalPowerSeries<mint> c, long long n) {
assert(a.size() == c.size());
if (n < a.size()) return a[n];
while (!c.empty() && c.back() == 0) c.pop_back();
if (c.size() < a.size()) {
int z = a.size() - c.size();
n -= z;
a.erase(a.begin(), a.begin() + z);
}
int d = c.size();
FormalPowerSeries<mint> q(d + 1);
q[0] = 1;
for (int i = 0; i < d; i++) q[i + 1] = -c[i];
auto p = (a * q).pre(d);
return BostanMori(p, q, n);
}
// a[i]=sum[j=1~d]c[j]a[i-j], i>=d
// find a[n],a[n+1],...,a[n+k-1]
template <class mint>
FormalPowerSeries<mint> LinearyRecurrentSequence(FormalPowerSeries<mint> a, FormalPowerSeries<mint> c, long long n, int k) {
assert(a.size() == c.size());
if (n + k < a.size()) {
a >>= (int)n;
return a.pre(k);
}
while (!c.empty() && c.back() == 0) c.pop_back();
int d = c.size();
FormalPowerSeries<mint> ret{};
if (c.size() < a.size()) {
int z = a.size() - c.size();
if (n < z) {
ret.reserve(k);
for (int i = n; i < z; i++) ret.push_back(a[i]);
}
n -= z;
if (n < 0) {
k += n;
n = 0;
}
a >>= z;
}
FormalPowerSeries<mint> q(d + 1);
q[0] = 1;
for (int i = 0; i < d; i++) q[i + 1] = -c[i];
auto p = (a * q).pre(d);
if (n < a.size()) {
p *= q.inv(n + k);
p >>= n;
} else {
p *= (InverseShift(q, n) * q).pre(d);
p %= q;
p *= q.inv(k);
}
p.resize(k);
if (ret.empty()) {
return p;
} else {
for (auto v : p) ret.push_back(v);
return ret;
}
}
template <class mint>
mint LinearyRecurrentSequence(FormalPowerSeries<mint> a, long long n) {
if (n < a.size()) return a[n];
auto b = BerlekampMassey(a);
int d = b.size() - 1;
a.resize(d);
int z = 0;
while (b.back() == 0) b.pop_back(), z++;
a >>= z;
n -= z;
d -= z;
return BostanMori((a * b).pre(b.size()), b, n);
}
/**
* @brief 線形漸化式用
* @docs docs/fps/linearly-recurrent-sequence.md
*/