Inverse の次数シフト
(fps/inverse-shift.hpp)
- View this file on GitHub
- Last update: 2025-10-21 21:13:36+09:00
- Include:
#include "fps/inverse-shift.hpp"
$d-1$ 次の FPS $f(x)$ について,$\dfrac{1}{f(x)}$ の $x^n$ から $x^{n+d-1}$ の係数を $O(d\log d\log n)$ 時間で求める.
これは $x^{-n}\bmod f(x)$ を求めることとも等価.
アルゴリズム
$f(x)$ の $x^a$ から $x^{b-1}$ の係数を並べた列を $[x^{[a,b)}]f(x)$ で表すことにする.
以下が成り立つ.
\[[x^{[n,n+d)}]\frac{1}{Q(x)}=[x^{[n,n+d)}]\frac{Q(-x)}{Q(x)Q(-x)}\]後から $Q(-x)$ を掛けることを考えると $[x^{[n-d,n+d)}]\dfrac{1}{Q(x)Q(-x)}$ を求めればよい.
$Q(x)Q(-x)=Q’(x^2)$ とおくと $[x^{[\lceil(n-d)/2\rceil,\lceil (n+d)/2\rceil)}]\dfrac{1}{Q’(x)}$ に帰着される.
$n$ が十分小さい場合は naive に計算してしまって構わない.
- 実装の場合分けを減らすため $n\leq d$ のとき naive に計算している.
FFT 削減
疑似コードで書くと以下のようになる.
shift(n, f): // 1/f(x) の x^n から x^(n+d-1) を返す
if n is small:
return naive(n, f)
f1(x) = f(-x)
g(x^2) = f(x) * f1(x)
g(x) = shift(ceil((n-d)/2), g) // d-1 次多項式とみなす
g(x) = g(x^2) * x^((n-d)%2)
return g(x) * f1(x) の x^d から x^(2d-1)
FFT の回数を削減するテクニック集 - noshi91のメモ のテクニックを使える部分が多い.
Depends on
Required by
Verified with
verify/fps/LC_consecutive_terms_of_linear_recurrent_sequence.test.cpp
verify/fps/LC_kth_term_of_linearly_recurrent_sequence.test.cpp
Code
#pragma once
#include "fps/formal-power-series.hpp"
// [x^n,...,x^{n+k-1}]1/f(x)
template <class mint>
FormalPowerSeries<mint> InverseShift(FormalPowerSeries<mint> f, long long n, int k = -1) {
using fps = FormalPowerSeries<mint>;
assert(f[0] != 0);
if (k == -1) k = f.size();
int m = 1;
while (m < k) m <<= 1;
int log = __builtin_ctz((unsigned int)m);
mint w = mint(fps::ntt_root()).pow((mint::get_mod() - 1) >> (log + 1));
mint wi = w.inv();
vector<int> rev(m);
for (int i = 0; i < rev.size(); i++) rev[i] = (rev[i / 2] / 2) | ((i & 1) << (log - 1));
mint inv2 = mint(2).inv();
f.resize(m);
f.ntt();
auto rec = [&](auto& rec, long long n) -> void {
if (n < m) {
f.intt();
f = f.inv(n + m);
f >>= n;
f.ntt();
return;
}
f.ntt_doubling();
assert(f.size() == 2 * m);
auto f1 = f;
for (int i = 0; i < m; i++) swap(f1[i << 1], f1[(i << 1) | 1]);
for (int i = 0; i < m; i++) f[i] = f[i << 1] * f[(i << 1) | 1];
f.resize(m);
rec(rec, (n - m + 1) / 2);
if (((n - m) & 1) == 0) {
f.resize(2 * m);
for (int i = m - 1; i >= 0; i--) {
f[(i << 1) | 1] = f[i];
f[i << 1] = f[i];
}
} else {
mint p = 1;
for (auto i : rev) f[i] *= p, p *= w;
f.resize(2 * m);
for (int i = m - 1; i >= 0; i--) {
f[(i << 1) | 1] = -f[i];
f[i << 1] = f[i];
}
}
for (int i = 0; i < 2 * m; i++) f[i] *= f1[i];
auto odd = fps(f.begin() + m, f.end());
odd.intt();
mint p = 1;
for (int i = 0; i < m; i++) odd[i] *= p, p *= wi;
odd.ntt();
f.resize(m);
for (int i = 0; i < m; i++) f[i] = (f[i] - odd[i]) * inv2;
};
rec(rec, n);
f.intt();
f.resize(k);
return f;
}
/**
* @brief Inverse の次数シフト
* @docs docs/fps/inverse-shift.md
*/#line 2 "fps/formal-power-series.hpp"
template <class mint>
struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using FPS = FormalPowerSeries;
FPS &operator+=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
FPS &operator+=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
FPS &operator-=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
return *this;
}
FPS &operator-=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
FPS &operator*=(const mint &v) {
for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
return *this;
}
FPS &operator/=(const FPS &r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
if ((int)r.size() <= 64) {
FPS f(*this), g(r);
g.shrink();
mint coeff = g.at(g.size() - 1).inv();
for (auto &x : g) x *= coeff;
int deg = (int)f.size() - (int)g.size() + 1;
int gs = g.size();
FPS quo(deg);
for (int i = deg - 1; i >= 0; i--) {
quo[i] = f[i + gs - 1];
for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
}
*this = quo * coeff;
this->resize(n, mint(0));
return *this;
}
return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
}
FPS &operator%=(const FPS &r) {
*this -= *this / r * r;
shrink();
return *this;
}
FPS operator+(const FPS &r) const { return FPS(*this) += r; }
FPS operator+(const mint &v) const { return FPS(*this) += v; }
FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
FPS operator-(const mint &v) const { return FPS(*this) -= v; }
FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
FPS operator*(const mint &v) const { return FPS(*this) *= v; }
FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
FPS operator-() const {
FPS ret(this->size());
for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
void shrink() {
while (this->size() && this->back() == mint(0)) this->pop_back();
}
FPS rev() const {
FPS ret(*this);
reverse(begin(ret), end(ret));
return ret;
}
FPS dot(FPS r) const {
FPS ret(min(this->size(), r.size()));
for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
FPS pre(int sz) const {
return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));
}
FPS operator>>=(int sz) {
assert(sz >= 0);
if ((int)this->size() <= sz) return {};
this->erase(this->begin(), this->begin() + sz);
return *this;
}
FPS operator>>(int sz) const {
if ((int)this->size() <= sz) return {};
FPS ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
FPS operator<<=(int sz) {
assert(sz >= 0);
this->insert(this->begin(), sz, mint(0));
return *this;
}
FPS operator<<(int sz) const {
FPS ret(*this);
ret.insert(ret.begin(), sz, mint(0));
return ret;
}
FPS diff() const {
const int n = (int)this->size();
FPS ret(max(0, n - 1));
mint one(1), coeff(1);
for (int i = 1; i < n; i++) {
ret[i - 1] = (*this)[i] * coeff;
coeff += one;
}
return ret;
}
FPS integral() const {
const int n = (int)this->size();
FPS ret(n + 1);
ret[0] = mint(0);
if (n > 0) ret[1] = mint(1);
auto mod = mint::get_mod();
for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
return ret;
}
mint eval(mint x) const {
mint r = 0, w = 1;
for (auto &v : *this) r += w * v, w *= x;
return r;
}
FPS log(int deg = -1) const {
assert((*this)[0] == mint(1));
if (deg == -1) deg = (int)this->size();
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
FPS pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
if (k == 0) {
FPS ret(deg);
if (deg) ret[0] = 1;
return ret;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != mint(0)) {
mint rev = mint(1) / (*this)[i];
FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
ret *= (*this)[i].pow(k);
ret = (ret << (i * k)).pre(deg);
if ((int)ret.size() < deg) ret.resize(deg, mint(0));
return ret;
}
if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
}
return FPS(deg, mint(0));
}
static void *ntt_ptr;
static void set_ntt();
FPS &operator*=(const FPS &r);
FPS middle_product(const FPS &r) const;
void ntt();
void intt();
void ntt_doubling();
static int ntt_root();
FPS inv(int deg = -1) const;
FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;
#line 3 "fps/inverse-shift.hpp"
// [x^n,...,x^{n+k-1}]1/f(x)
template <class mint>
FormalPowerSeries<mint> InverseShift(FormalPowerSeries<mint> f, long long n, int k = -1) {
using fps = FormalPowerSeries<mint>;
assert(f[0] != 0);
if (k == -1) k = f.size();
int m = 1;
while (m < k) m <<= 1;
int log = __builtin_ctz((unsigned int)m);
mint w = mint(fps::ntt_root()).pow((mint::get_mod() - 1) >> (log + 1));
mint wi = w.inv();
vector<int> rev(m);
for (int i = 0; i < rev.size(); i++) rev[i] = (rev[i / 2] / 2) | ((i & 1) << (log - 1));
mint inv2 = mint(2).inv();
f.resize(m);
f.ntt();
auto rec = [&](auto& rec, long long n) -> void {
if (n < m) {
f.intt();
f = f.inv(n + m);
f >>= n;
f.ntt();
return;
}
f.ntt_doubling();
assert(f.size() == 2 * m);
auto f1 = f;
for (int i = 0; i < m; i++) swap(f1[i << 1], f1[(i << 1) | 1]);
for (int i = 0; i < m; i++) f[i] = f[i << 1] * f[(i << 1) | 1];
f.resize(m);
rec(rec, (n - m + 1) / 2);
if (((n - m) & 1) == 0) {
f.resize(2 * m);
for (int i = m - 1; i >= 0; i--) {
f[(i << 1) | 1] = f[i];
f[i << 1] = f[i];
}
} else {
mint p = 1;
for (auto i : rev) f[i] *= p, p *= w;
f.resize(2 * m);
for (int i = m - 1; i >= 0; i--) {
f[(i << 1) | 1] = -f[i];
f[i << 1] = f[i];
}
}
for (int i = 0; i < 2 * m; i++) f[i] *= f1[i];
auto odd = fps(f.begin() + m, f.end());
odd.intt();
mint p = 1;
for (int i = 0; i < m; i++) odd[i] *= p, p *= wi;
odd.ntt();
f.resize(m);
for (int i = 0; i < m; i++) f[i] = (f[i] - odd[i]) * inv2;
};
rec(rec, n);
f.intt();
f.resize(k);
return f;
}
/**
* @brief Inverse の次数シフト
* @docs docs/fps/inverse-shift.md
*/