Bostan-Mori
(fps/bostan-mori.hpp)
- View this file on GitHub
- Last update: 2025-10-21 21:13:36+09:00
- Include:
#include "fps/bostan-mori.hpp"
Bostan-Mori 法.
高々 $m$ 次のFPS $f,g$ に対し $[x^n]\frac{f(x)}{g(x)}$ を $O(m\log m\log n)$ 時間で求める.
アルゴリズム
以下の変形をする.
\[\frac{f(x)}{g(x)}=\frac{f(x)g(-x)}{g(x)g(-x)}\]$g(x)g(-x)$ は偶関数であるから $g(x)g(-x)=g’(x^2)$ とおける.
$n$ が偶数のとき,$f(x)g(-x)$ の偶数次の部分を $f’(x^2)$ とすれば以下が成り立つ.
\[[x^n]\frac{f(x)}{g(x)}=[x^n]\frac{f'(x^2)}{g'(x^2)}=[x^{n/2}]\frac{f'(x)}{g'(x)}\]$n$ が奇数のときも同様.
定数倍高速化
$\max(\deg f,\deg g)+1$ 以上の最小の二冪を $m$ とし,$1$ の原始 $2m$ 乗根 $\omega$ をとる.
$g’(\omega^{2i})=g(\omega^i)g(\omega^{i+m})$ であるので,$g$ に長さ $2m$ の FFT をし,適当に積を取って長さ $m$ の IFTT をすれば $g’$ が求められる.
また FFT のダブリングを用いればさらに定数倍が改善できる.
Depends on
Required by
Verified with
verify/fps/LC_consecutive_terms_of_linear_recurrent_sequence.test.cpp
verify/fps/LC_kth_term_of_linearly_recurrent_sequence.test.cpp
Code
#pragma once
#include "fps/formal-power-series.hpp"
// [x^n]f(x)/g(x)
template <class mint>
mint BostanMori(FormalPowerSeries<mint> f, FormalPowerSeries<mint> g, long long n) {
g.shrink();
mint ret = 0;
if (f.size() >= g.size()) {
auto q = f / g;
if (n < q.size()) ret += q[n];
f -= q * g;
f.shrink();
}
if (f.empty()) return ret;
FormalPowerSeries<mint>::set_ntt();
if (!FormalPowerSeries<mint>::ntt_ptr) {
f.resize(g.size() - 1);
for (; n > 0; n >>= 1) {
auto g1 = g;
for (int i = 1; i < g1.size(); i += 2) g1[i] = -g1[i];
auto p = f * g1, q = g * g1;
if (n & 1) {
for (int i = 0; i < f.size(); i++) f[i] = p[(i << 1) | 1];
} else {
for (int i = 0; i < f.size(); i++) f[i] = p[i << 1];
}
for (int i = 0; i < g.size(); i++) g[i] = q[i << 1];
}
return ret + f[0] / g[0];
} else {
int m = 1, log = 0;
while (m < g.size()) m <<= 1, log++;
mint wi = mint(FormalPowerSeries<mint>::ntt_root()).inv().pow((mint::get_mod() - 1) >> (log + 1));
vector<int> rev(m);
for (int i = 0; i < rev.size(); i++) rev[i] = (rev[i / 2] / 2) | ((i & 1) << (log - 1));
vector<mint> pow(m, 1);
for (int i = 1; i < m; i++) pow[rev[i]] = pow[rev[i - 1]] * wi;
f.resize(m), g.resize(m);
f.ntt(), g.ntt();
mint inv2 = mint(2).inv();
for (; n >= m; n >>= 1) {
f.ntt_doubling(), g.ntt_doubling();
if (n & 1) {
for (int i = 0; i < m; i++) f[i] = (f[i << 1] * g[(i << 1) | 1] - f[(i << 1) | 1] * g[i << 1]) * inv2 * pow[i];
} else {
for (int i = 0; i < m; i++) f[i] = (f[i << 1] * g[(i << 1) | 1] + f[(i << 1) | 1] * g[i << 1]) * inv2;
}
for (int i = 0; i < m; i++) g[i] = g[i << 1] * g[(i << 1) | 1];
f.resize(m), g.resize(m);
}
f.intt(), g.intt();
return ret + (f * g.inv())[n];
}
}
/**
* @brief Bostan-Mori
* @docs docs/fps/bostan-mori.md
*/#line 2 "fps/formal-power-series.hpp"
template <class mint>
struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using FPS = FormalPowerSeries;
FPS &operator+=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
FPS &operator+=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
FPS &operator-=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
return *this;
}
FPS &operator-=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
FPS &operator*=(const mint &v) {
for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
return *this;
}
FPS &operator/=(const FPS &r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
if ((int)r.size() <= 64) {
FPS f(*this), g(r);
g.shrink();
mint coeff = g.at(g.size() - 1).inv();
for (auto &x : g) x *= coeff;
int deg = (int)f.size() - (int)g.size() + 1;
int gs = g.size();
FPS quo(deg);
for (int i = deg - 1; i >= 0; i--) {
quo[i] = f[i + gs - 1];
for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
}
*this = quo * coeff;
this->resize(n, mint(0));
return *this;
}
return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
}
FPS &operator%=(const FPS &r) {
*this -= *this / r * r;
shrink();
return *this;
}
FPS operator+(const FPS &r) const { return FPS(*this) += r; }
FPS operator+(const mint &v) const { return FPS(*this) += v; }
FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
FPS operator-(const mint &v) const { return FPS(*this) -= v; }
FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
FPS operator*(const mint &v) const { return FPS(*this) *= v; }
FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
FPS operator-() const {
FPS ret(this->size());
for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
void shrink() {
while (this->size() && this->back() == mint(0)) this->pop_back();
}
FPS rev() const {
FPS ret(*this);
reverse(begin(ret), end(ret));
return ret;
}
FPS dot(FPS r) const {
FPS ret(min(this->size(), r.size()));
for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
FPS pre(int sz) const {
return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));
}
FPS operator>>=(int sz) {
assert(sz >= 0);
if ((int)this->size() <= sz) return {};
this->erase(this->begin(), this->begin() + sz);
return *this;
}
FPS operator>>(int sz) const {
if ((int)this->size() <= sz) return {};
FPS ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
FPS operator<<=(int sz) {
assert(sz >= 0);
this->insert(this->begin(), sz, mint(0));
return *this;
}
FPS operator<<(int sz) const {
FPS ret(*this);
ret.insert(ret.begin(), sz, mint(0));
return ret;
}
FPS diff() const {
const int n = (int)this->size();
FPS ret(max(0, n - 1));
mint one(1), coeff(1);
for (int i = 1; i < n; i++) {
ret[i - 1] = (*this)[i] * coeff;
coeff += one;
}
return ret;
}
FPS integral() const {
const int n = (int)this->size();
FPS ret(n + 1);
ret[0] = mint(0);
if (n > 0) ret[1] = mint(1);
auto mod = mint::get_mod();
for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
return ret;
}
mint eval(mint x) const {
mint r = 0, w = 1;
for (auto &v : *this) r += w * v, w *= x;
return r;
}
FPS log(int deg = -1) const {
assert((*this)[0] == mint(1));
if (deg == -1) deg = (int)this->size();
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
FPS pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
if (k == 0) {
FPS ret(deg);
if (deg) ret[0] = 1;
return ret;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != mint(0)) {
mint rev = mint(1) / (*this)[i];
FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
ret *= (*this)[i].pow(k);
ret = (ret << (i * k)).pre(deg);
if ((int)ret.size() < deg) ret.resize(deg, mint(0));
return ret;
}
if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
}
return FPS(deg, mint(0));
}
static void *ntt_ptr;
static void set_ntt();
FPS &operator*=(const FPS &r);
FPS middle_product(const FPS &r) const;
void ntt();
void intt();
void ntt_doubling();
static int ntt_root();
FPS inv(int deg = -1) const;
FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;
#line 3 "fps/bostan-mori.hpp"
// [x^n]f(x)/g(x)
template <class mint>
mint BostanMori(FormalPowerSeries<mint> f, FormalPowerSeries<mint> g, long long n) {
g.shrink();
mint ret = 0;
if (f.size() >= g.size()) {
auto q = f / g;
if (n < q.size()) ret += q[n];
f -= q * g;
f.shrink();
}
if (f.empty()) return ret;
FormalPowerSeries<mint>::set_ntt();
if (!FormalPowerSeries<mint>::ntt_ptr) {
f.resize(g.size() - 1);
for (; n > 0; n >>= 1) {
auto g1 = g;
for (int i = 1; i < g1.size(); i += 2) g1[i] = -g1[i];
auto p = f * g1, q = g * g1;
if (n & 1) {
for (int i = 0; i < f.size(); i++) f[i] = p[(i << 1) | 1];
} else {
for (int i = 0; i < f.size(); i++) f[i] = p[i << 1];
}
for (int i = 0; i < g.size(); i++) g[i] = q[i << 1];
}
return ret + f[0] / g[0];
} else {
int m = 1, log = 0;
while (m < g.size()) m <<= 1, log++;
mint wi = mint(FormalPowerSeries<mint>::ntt_root()).inv().pow((mint::get_mod() - 1) >> (log + 1));
vector<int> rev(m);
for (int i = 0; i < rev.size(); i++) rev[i] = (rev[i / 2] / 2) | ((i & 1) << (log - 1));
vector<mint> pow(m, 1);
for (int i = 1; i < m; i++) pow[rev[i]] = pow[rev[i - 1]] * wi;
f.resize(m), g.resize(m);
f.ntt(), g.ntt();
mint inv2 = mint(2).inv();
for (; n >= m; n >>= 1) {
f.ntt_doubling(), g.ntt_doubling();
if (n & 1) {
for (int i = 0; i < m; i++) f[i] = (f[i << 1] * g[(i << 1) | 1] - f[(i << 1) | 1] * g[i << 1]) * inv2 * pow[i];
} else {
for (int i = 0; i < m; i++) f[i] = (f[i << 1] * g[(i << 1) | 1] + f[(i << 1) | 1] * g[i << 1]) * inv2;
}
for (int i = 0; i < m; i++) g[i] = g[i << 1] * g[(i << 1) | 1];
f.resize(m), g.resize(m);
}
f.intt(), g.intt();
return ret + (f * g.inv())[n];
}
}
/**
* @brief Bostan-Mori
* @docs docs/fps/bostan-mori.md
*/