Skip to the content.

:heavy_check_mark: verify/fps/LC_sum_of_exponential_times_polynomial_limit.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/sum_of_exponential_times_polynomial_limit"

#include "template/template.hpp"
#include "modint/modint.hpp"
using mint = ModInt<998244353>;
#include "modint/factorial.hpp"
#include "modint/power-table.hpp"
#include "fps/sum-of-exp-poly.hpp"

int main() {
  mint r;
  int d;
  in(r, d);
  auto f = PowerTable<mint>(d, d);
  out(SumOfExpPolyLimit(r, f));
}
#line 1 "verify/fps/LC_sum_of_exponential_times_polynomial_limit.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/sum_of_exponential_times_polynomial_limit"

#line 2 "template/template.hpp"
#include <bits/stdc++.h>
using namespace std;

#line 2 "template/macro.hpp"
#define rep(i, a, b) for (int i = (a); i < (int)(b); i++)
#define rrep(i, a, b) for (int i = (int)(b) - 1; i >= (a); i--)
#define ALL(v) (v).begin(), (v).end()
#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())
#define SZ(v) (int)v.size()
#define MIN(v) *min_element(ALL(v))
#define MAX(v) *max_element(ALL(v))
#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())
#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())
#define YN(b) cout << ((b) ? "YES" : "NO") << "\n";
#define Yn(b) cout << ((b) ? "Yes" : "No") << "\n";
#define yn(b) cout << ((b) ? "yes" : "no") << "\n";
#line 6 "template/template.hpp"

#line 2 "template/util.hpp"
using uint = unsigned int;
using ll = long long int;
using ull = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <class T, class S = T>
S SUM(const vector<T> &a) {
  return accumulate(ALL(a), S(0));
}
template <class T>
inline bool chmin(T &a, T b) {
  if (a > b) {
    a = b;
    return true;
  }
  return false;
}
template <class T>
inline bool chmax(T &a, T b) {
  if (a < b) {
    a = b;
    return true;
  }
  return false;
}

template <class T>
int popcnt(T x) {
  return __builtin_popcountll(x);
}
template <class T>
int topbit(T x) {
  return (x == 0 ? -1 : 63 - __builtin_clzll(x));
}
template <class T>
int lowbit(T x) {
  return (x == 0 ? -1 : __builtin_ctzll(x));
}
#line 8 "template/template.hpp"

#line 2 "template/inout.hpp"
struct Fast {
  Fast() {
    cin.tie(nullptr);
    ios_base::sync_with_stdio(false);
    cout << fixed << setprecision(15);
  }
} fast;

template <class T1, class T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
  return is >> p.first >> p.second;
}
template <class T1, class T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
  return os << p.first << " " << p.second;
}
template <class T>
istream &operator>>(istream &is, vector<T> &a) {
  for (auto &v : a) is >> v;
  return is;
}
template <class T>
ostream &operator<<(ostream &os, const vector<T> &a) {
  for (auto it = a.begin(); it != a.end();) {
    os << *it;
    if (++it != a.end()) os << " ";
  }
  return os;
}
template <class T>
ostream &operator<<(ostream &os, const set<T> &st) {
  os << "{";
  for (auto it = st.begin(); it != st.end();) {
    os << *it;
    if (++it != st.end()) os << ",";
  }
  os << "}";
  return os;
}
template <class T1, class T2>
ostream &operator<<(ostream &os, const map<T1, T2> &mp) {
  os << "{";
  for (auto it = mp.begin(); it != mp.end();) {
    os << it->first << ":" << it->second;
    if (++it != mp.end()) os << ",";
  }
  os << "}";
  return os;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}
#line 10 "template/template.hpp"

#line 2 "template/debug.hpp"
#ifdef LOCAL
#define debug 1
#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)
#else
#define debug 0
#define show(...) true
#endif
template <class T>
void _show(int i, T name) {
  cerr << '\n';
}
template <class T1, class T2, class... T3>
void _show(int i, const T1 &a, const T2 &b, const T3 &...c) {
  for (; a[i] != ',' && a[i] != '\0'; i++) cerr << a[i];
  cerr << ":" << b << " ";
  _show(i + 1, a, c...);
}
#line 2 "modint/modint.hpp"

template <unsigned int m = 998244353>
struct ModInt {
  using mint = ModInt;
  unsigned int _v;
  static constexpr unsigned int get_mod() { return m; }
  static mint raw(int v) {
    mint x;
    x._v = v;
    return x;
  }
  ModInt() : _v(0) {}
  ModInt(int64_t v) {
    long long x = (long long)(v % (long long)(umod()));
    if (x < 0) x += umod();
    _v = (unsigned int)(x);
  }
  unsigned int val() const { return _v; }
  mint &operator++() {
    _v++;
    if (_v == umod()) _v = 0;
    return *this;
  }
  mint &operator--() {
    if (_v == 0) _v = umod();
    _v--;
    return *this;
  }
  mint operator++(int) {
    mint result = *this;
    ++*this;
    return result;
  }
  mint operator--(int) {
    mint result = *this;
    --*this;
    return result;
  }

  mint &operator+=(const mint &rhs) {
    _v += rhs._v;
    if (_v >= umod()) _v -= umod();
    return *this;
  }
  mint &operator-=(const mint &rhs) {
    _v -= rhs._v;
    if (_v >= umod()) _v += umod();
    return *this;
  }
  mint &operator*=(const mint &rhs) {
    unsigned long long z = _v;
    z *= rhs._v;
    _v = (unsigned int)(z % umod());
    return *this;
  }
  mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }

  mint operator+() const { return *this; }
  mint operator-() const { return mint() - *this; }

  mint pow(long long n) const {
    assert(0 <= n);
    mint x = *this, r = 1;
    while (n) {
      if (n & 1) r *= x;
      x *= x;
      n >>= 1;
    }
    return r;
  }
  mint inv() const {
    assert(_v);
    return pow(umod() - 2);
  }

  friend mint operator+(const mint &lhs, const mint &rhs) {
    return mint(lhs) += rhs;
  }
  friend mint operator-(const mint &lhs, const mint &rhs) {
    return mint(lhs) -= rhs;
  }
  friend mint operator*(const mint &lhs, const mint &rhs) {
    return mint(lhs) *= rhs;
  }
  friend mint operator/(const mint &lhs, const mint &rhs) {
    return mint(lhs) /= rhs;
  }
  friend bool operator==(const mint &lhs, const mint &rhs) {
    return lhs._v == rhs._v;
  }
  friend bool operator!=(const mint &lhs, const mint &rhs) {
    return lhs._v != rhs._v;
  }
  friend istream &operator>>(istream &is, mint &x) {
    return is >> x._v;
  }
  friend ostream &operator<<(ostream &os, const mint &x) {
    return os << x.val();
  }

 private:
  static constexpr unsigned int umod() { return m; }
};
#line 5 "verify/fps/LC_sum_of_exponential_times_polynomial_limit.test.cpp"
using mint = ModInt<998244353>;
#line 2 "modint/factorial.hpp"

template <class mint>
struct Factorial {
  static void reserve(int n) {
    inv(n);
    fact(n);
    fact_inv(n);
  }
  static mint inv(int n) {
    static long long mod = mint::get_mod();
    static vector<mint> buf({0, 1});
    assert(n != 0);
    if (mod != mint::get_mod()) {
      mod = mint::get_mod();
      buf = vector<mint>({0, 1});
    }
    while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
    while ((int)buf.size() <= n) {
      long long k = buf.size(), q = (mod + k - 1) / k;
      buf.push_back(q * buf[k * q - mod]);
    }
    return buf[n];
  }
  static mint fact(int n) {
    static long long mod = mint::get_mod();
    static vector<mint> buf({1, 1});
    assert(n >= 0);
    if (mod != mint::get_mod()) {
      mod = mint::get_mod();
      buf = vector<mint>({1, 1});
    }
    while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
    while ((int)buf.size() <= n) {
      long long k = buf.size();
      buf.push_back(buf.back() * k);
    }
    return buf[n];
  }
  static mint fact_inv(int n) {
    static long long mod = mint::get_mod();
    static vector<mint> buf({1, 1});
    assert(n >= 0);
    if (mod != mint::get_mod()) {
      mod = mint::get_mod();
      buf = vector<mint>({1, 1});
    }
    if ((int)buf.size() <= n) inv(n);
    while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
    while ((int)buf.size() <= n) {
      long long k = buf.size();
      buf.push_back(buf.back() * inv(k));
    }
    return buf[n];
  }
  static mint binom(int n, int r) {
    if (r < 0 || r > n) return 0;
    return fact(n) * fact_inv(r) * fact_inv(n - r);
  }
  static mint binom_naive(int n, int r) {
    if (r < 0 || r > n) return 0;
    mint res = fact_inv(r);
    for (int i = 0; i < r; i++) res *= n - i;
    return res;
  }
  static mint multinom(const vector<int>& r) {
    int n = 0;
    for (auto& x : r) {
      if (x < 0) return 0;
      n += x;
    }
    mint res = fact(n);
    for (auto& x : r) res *= fact_inv(x);
    return res;
  }
  static mint P(int n, int r) {
    if (r < 0 || r > n) return 0;
    return fact(n) * fact_inv(n - r);
  }
  // partition n items to r groups (allow empty group)
  static mint H(int n, int r) {
    if (n < 0 || r < 0) return 0;
    return r == 0 ? 1 : binom(n + r - 1, r);
  }
};
/**
 * @brief 階乗, 二項係数
 */
#line 2 "math/lpf-table.hpp"

vector<int> LPFTable(int n) {
  vector<int> lpf(n + 1, 0);
  iota(lpf.begin(), lpf.end(), 0);
  for (int p = 2; p * p <= n; p += (p & 1) + 1) {
    if (lpf[p] != p) continue;
    for (int i = p * p; i <= n; i += p)
      if (lpf[i] == i) lpf[i] = p;
  }
  return lpf;
}
/**
 * @brief LPF Table
 */
#line 3 "modint/power-table.hpp"

// 0^k,1^k,2^k,...,n^k
template <class T>
vector<T> PowerTable(int n, int k) {
  assert(k >= 0);
  vector<T> f;
  if (k == 0) {
    f = vector<T>(n + 1, 0);
    f[0] = 1;
  } else {
    f = vector<T>(n + 1, 1);
    f[0] = 0;
    auto lpf = LPFTable(n);
    for (int i = 2; i <= n; i++)
      f[i] = lpf[i] == i ? T(i).pow(k) : f[i / lpf[i]] * f[lpf[i]];
  }
  return f;
}
/**
 * @brief Power Table
 */
#line 3 "fps/interpolate.hpp"

// f(0),f(1),...,f(n-1) -> f(x)
template <class mint>
mint Interpolate(const vector<mint>& f, mint x) {
  int n = f.size();
  vector<mint> l(n, 1), r(n, 1);
  for (int i = 0; i + 1 < n; i++) l[i + 1] = l[i] * (x - i);
  for (int i = n - 1; i > 0; i--) r[i - 1] = r[i] * (x - i);
  using fact = Factorial<mint>;
  mint s = 0;
  for (int i = 0; i < n; i++) {
    mint v = f[i] * l[i] * r[i] * fact::fact_inv(i) * fact::fact_inv(n - 1 - i);
    if ((n - i) & 1)
      s += v;
    else
      s -= v;
  }
  return s;
}
/**
 * @brief Interpolate
 * @docs docs/fps/interpolate.md
 */
#line 4 "fps/sum-of-exp-poly.hpp"

// sum_{i=0}^{infty}r^i*poly(i)
// f[i]=poly(i)
template <class mint>
mint SumOfExpPolyLimit(mint r, vector<mint>& f) {
  if (r == 0) return f[0];
  assert(r != 1);
  int k = f.size();
  vector<mint> g(k + 1, 0);
  mint prod = 1;
  for (int i = 0; i < k; i++) {
    g[i + 1] = g[i] + f[i] * prod;
    prod *= r;
  }
  using fact = Factorial<mint>;
  mint c = 0;
  prod = 1;
  for (int i = 0; i <= k; i++) {
    c += fact::binom(k, i) * prod * g[k - i];
    prod *= -r;
  }
  c /= (1 - r).pow(k);
  return c;
}
// sum_{i=0}^{n-1}r^i*poly(i)
// f[i]=poly(i)
template <class mint>
mint SumOfExpPoly(long long n, mint r, vector<mint>& f) {
  if (n <= 0) return 0;
  if (r == 0) return f[0];
  int k = f.size();
  vector<mint> g(k + 1, 0);
  mint prod = 1;
  for (int i = 0; i < k; i++) {
    g[i + 1] = g[i] + f[i] * prod;
    prod *= r;
  }
  if (r == 1) return Interpolate(g, mint(n));
  mint c = 0;
  prod = 1;
  using fact = Factorial<mint>;
  for (int i = 0; i <= k; i++) {
    c += fact::binom(k, i) * prod * g[k - i];
    prod *= -r;
  }
  c /= (1 - r).pow(k);
  for (int i = 0; i <= k; i++) g[i] -= c;
  mint ir = r.inv();
  prod = 1;
  for (int i = 1; i <= k; i++) g[i] *= (prod *= ir);
  return Interpolate(g, mint(n)) * r.pow(n) + c;
}
/**
 * @brief $\sum_{i}r^i poly(i)$
 * @docs docs/fps/sum-of-exp-poly.md
 */
#line 9 "verify/fps/LC_sum_of_exponential_times_polynomial_limit.test.cpp"

int main() {
  mint r;
  int d;
  in(r, d);
  auto f = PowerTable<mint>(d, d);
  out(SumOfExpPolyLimit(r, f));
}
Back to top page