Interpolate
(fps/interpolate.hpp)
- View this file on GitHub
- Last update: 2025-10-25 18:30:13+09:00
- Include:
#include "fps/interpolate.hpp"
Lagrange 補間.
$f$ が $N-1$ 次であると仮定し,$f(0),f(1),\dots,f(N-1)$ の値から $f(x)$ の値を求める.
$O(N)$ 時間.
Depends on
Required by
Verified with
verify/fps/LC_sum_of_exponential_times_polynomial.test.cpp
verify/fps/LC_sum_of_exponential_times_polynomial_limit.test.cpp
Code
#pragma once
#include "modint/factorial.hpp"
// f(0),f(1),...,f(n-1) -> f(x)
template <class mint>
mint Interpolate(const vector<mint>& f, mint x) {
int n = f.size();
vector<mint> l(n, 1), r(n, 1);
for (int i = 0; i + 1 < n; i++) l[i + 1] = l[i] * (x - i);
for (int i = n - 1; i > 0; i--) r[i - 1] = r[i] * (x - i);
using fact = Factorial<mint>;
mint s = 0;
for (int i = 0; i < n; i++) {
mint v = f[i] * l[i] * r[i] * fact::fact_inv(i) * fact::fact_inv(n - 1 - i);
if ((n - i) & 1)
s += v;
else
s -= v;
}
return s;
}
/**
* @brief Interpolate
* @docs docs/fps/interpolate.md
*/#line 2 "modint/factorial.hpp"
template <class mint>
struct Factorial {
static void reserve(int n) {
inv(n);
fact(n);
fact_inv(n);
}
static mint inv(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({0, 1});
assert(n != 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({0, 1});
}
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size(), q = (mod + k - 1) / k;
buf.push_back(q * buf[k * q - mod]);
}
return buf[n];
}
static mint fact(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({1, 1});
assert(n >= 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({1, 1});
}
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size();
buf.push_back(buf.back() * k);
}
return buf[n];
}
static mint fact_inv(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({1, 1});
assert(n >= 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({1, 1});
}
if ((int)buf.size() <= n) inv(n);
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size();
buf.push_back(buf.back() * inv(k));
}
return buf[n];
}
static mint binom(int n, int r) {
if (r < 0 || r > n) return 0;
return fact(n) * fact_inv(r) * fact_inv(n - r);
}
static mint binom_naive(int n, int r) {
if (r < 0 || r > n) return 0;
mint res = fact_inv(r);
for (int i = 0; i < r; i++) res *= n - i;
return res;
}
static mint multinom(const vector<int>& r) {
int n = 0;
for (auto& x : r) {
if (x < 0) return 0;
n += x;
}
mint res = fact(n);
for (auto& x : r) res *= fact_inv(x);
return res;
}
static mint P(int n, int r) {
if (r < 0 || r > n) return 0;
return fact(n) * fact_inv(n - r);
}
// partition n items to r groups (allow empty group)
static mint H(int n, int r) {
if (n < 0 || r < 0) return 0;
return r == 0 ? 1 : binom(n + r - 1, r);
}
};
/**
* @brief 階乗, 二項係数
*/
#line 3 "fps/interpolate.hpp"
// f(0),f(1),...,f(n-1) -> f(x)
template <class mint>
mint Interpolate(const vector<mint>& f, mint x) {
int n = f.size();
vector<mint> l(n, 1), r(n, 1);
for (int i = 0; i + 1 < n; i++) l[i + 1] = l[i] * (x - i);
for (int i = n - 1; i > 0; i--) r[i - 1] = r[i] * (x - i);
using fact = Factorial<mint>;
mint s = 0;
for (int i = 0; i < n; i++) {
mint v = f[i] * l[i] * r[i] * fact::fact_inv(i) * fact::fact_inv(n - 1 - i);
if ((n - i) & 1)
s += v;
else
s -= v;
}
return s;
}
/**
* @brief Interpolate
* @docs docs/fps/interpolate.md
*/