modint/modint.hpp
- View this file on GitHub
- Last update: 2025-10-17 21:43:09+09:00
- Include:
#include "modint/modint.hpp"
Required by
Verified with
verify/convolution/LC_convolution_mod.test.cpp
verify/convolution/LC_convolution_mod_1000000007.test.cpp
verify/convolution/LC_gcd_convolution.test.cpp
verify/convolution/LC_lcm_convolution.test.cpp
verify/fps/LC_composition_of_formal_power_series.test.cpp
verify/fps/LC_composition_of_formal_power_series_large.test.cpp
verify/fps/LC_compositional_inverse_of_formal_power_series.test.cpp
verify/fps/LC_compositional_inverse_of_formal_power_series_large.test.cpp
verify/fps/LC_consecutive_terms_of_linear_recurrent_sequence.test.cpp
verify/fps/LC_convolution_mod.relaxed.test.cpp
verify/fps/LC_convolution_mod.semirelaxed.test.cpp
verify/fps/LC_division_of_polynomials.test.cpp
verify/fps/LC_exp_of_formal_power_series.relaxed.test.cpp
verify/fps/LC_exp_of_formal_power_series.test.cpp
verify/fps/LC_exp_of_formal_power_series_sparse.test.cpp
verify/fps/LC_find_linear_recurrence.test.cpp
verify/fps/LC_inv_of_formal_power_series.relaxed.test.cpp
verify/fps/LC_inv_of_formal_power_series.test.cpp
verify/fps/LC_inv_of_formal_power_series_sparse.test.cpp
verify/fps/LC_kth_term_of_linearly_recurrent_sequence.test.cpp
verify/fps/LC_log_of_formal_power_series.relaxed.test.cpp
verify/fps/LC_log_of_formal_power_series.test.cpp
verify/fps/LC_log_of_formal_power_series_sparse.test.cpp
verify/fps/LC_multipoint_evaluation.test.cpp
verify/fps/LC_multipoint_evaluation_on_geometric_sequence.test.cpp
verify/fps/LC_polynomial_interpolation.test.cpp
verify/fps/LC_polynomial_taylor_shift.test.cpp
verify/fps/LC_pow_of_formal_power_series.test.cpp
verify/fps/LC_pow_of_formal_power_series_sparse.test.cpp
verify/fps/LC_product_of_polynomial_sequence.test.cpp
verify/fps/LC_shift_of_sampling_points_of_polynomial.test.cpp
verify/fps/LC_sqrt_of_formal_power_series.relaxed.test.cpp
verify/fps/LC_sqrt_of_formal_power_series.test.cpp
verify/fps/LC_sqrt_of_formal_power_series_sparse.test.cpp
verify/fps/LC_sum_of_exponential_times_polynomial.test.cpp
verify/fps/LC_sum_of_exponential_times_polynomial_limit.test.cpp
verify/fps/UNIT_prefix_sum_of_polynomial.test.cpp
verify/segment-tree/LC_point_set_range_composite.test.cpp
verify/segment-tree/LC_range_affine_point_get.test.cpp
verify/segment-tree/LC_range_affine_range_sum.test.cpp
verify/set/LC_bitwise_and_convolution.or.test.cpp
verify/set/LC_bitwise_and_convolution.test.cpp
verify/set/LC_bitwise_xor_convolution.test.cpp
verify/set/LC_exp_of_set_power_series.test.cpp
verify/set/LC_polynomial_composite_set_power_series.test.cpp
verify/set/LC_subset_convolution.test.cpp
verify/set/UNIT_composite_set_power_series.test.cpp
verify/union-find/LC_unionfind_with_potential.test.cpp
Code
#pragma once
template <unsigned int m = 998244353>
struct ModInt {
using mint = ModInt;
unsigned int _v;
static constexpr unsigned int get_mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
ModInt() : _v(0) {}
ModInt(int64_t v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
unsigned int val() const { return _v; }
mint &operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint &operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint &operator+=(const mint &rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint &operator-=(const mint &rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint &operator*=(const mint &rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
assert(_v);
return pow(umod() - 2);
}
friend mint operator+(const mint &lhs, const mint &rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint &lhs, const mint &rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint &lhs, const mint &rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint &lhs, const mint &rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint &lhs, const mint &rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint &lhs, const mint &rhs) {
return lhs._v != rhs._v;
}
friend istream &operator>>(istream &is, mint &x) {
return is >> x._v;
}
friend ostream &operator<<(ostream &os, const mint &x) {
return os << x.val();
}
private:
static constexpr unsigned int umod() { return m; }
};#line 2 "modint/modint.hpp"
template <unsigned int m = 998244353>
struct ModInt {
using mint = ModInt;
unsigned int _v;
static constexpr unsigned int get_mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
ModInt() : _v(0) {}
ModInt(int64_t v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
unsigned int val() const { return _v; }
mint &operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint &operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint &operator+=(const mint &rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint &operator-=(const mint &rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint &operator*=(const mint &rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint &operator/=(const mint &rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
assert(_v);
return pow(umod() - 2);
}
friend mint operator+(const mint &lhs, const mint &rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint &lhs, const mint &rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint &lhs, const mint &rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint &lhs, const mint &rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint &lhs, const mint &rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint &lhs, const mint &rhs) {
return lhs._v != rhs._v;
}
friend istream &operator>>(istream &is, mint &x) {
return is >> x._v;
}
friend ostream &operator<<(ostream &os, const mint &x) {
return os << x.val();
}
private:
static constexpr unsigned int umod() { return m; }
};