Skip to the content.

:heavy_check_mark: verify/number-theory/LC_enumerate_quotients.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/enumerate_quotients"

#include "template/template.hpp"
#include "number-theory/enumerate-quotients.hpp"

int main() {
  ll n;
  in(n);
  auto qs = EnumerateQuotients::table(n);
  out(qs.size());
  out(qs);
}
#line 1 "verify/number-theory/LC_enumerate_quotients.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/enumerate_quotients"

#line 2 "template/template.hpp"
#include <bits/stdc++.h>
using namespace std;

#line 2 "template/macro.hpp"
#define rep(i, a, b) for (int i = (a); i < (int)(b); i++)
#define rrep(i, a, b) for (int i = (int)(b) - 1; i >= (a); i--)
#define ALL(v) (v).begin(), (v).end()
#define UNIQUE(v) sort(ALL(v)), (v).erase(unique(ALL(v)), (v).end())
#define SZ(v) (int)v.size()
#define MIN(v) *min_element(ALL(v))
#define MAX(v) *max_element(ALL(v))
#define LB(v, x) int(lower_bound(ALL(v), (x)) - (v).begin())
#define UB(v, x) int(upper_bound(ALL(v), (x)) - (v).begin())
#define YN(b) cout << ((b) ? "YES" : "NO") << "\n";
#define Yn(b) cout << ((b) ? "Yes" : "No") << "\n";
#define yn(b) cout << ((b) ? "yes" : "no") << "\n";
#line 6 "template/template.hpp"

#line 2 "template/util.hpp"
using uint = unsigned int;
using ll = long long int;
using ull = unsigned long long;
using i128 = __int128_t;
using u128 = __uint128_t;

template <class T, class S = T>
S SUM(const vector<T> &a) {
  return accumulate(ALL(a), S(0));
}
template <class T>
inline bool chmin(T &a, T b) {
  if (a > b) {
    a = b;
    return true;
  }
  return false;
}
template <class T>
inline bool chmax(T &a, T b) {
  if (a < b) {
    a = b;
    return true;
  }
  return false;
}

template <class T>
int popcnt(T x) {
  return __builtin_popcountll(x);
}
template <class T>
int topbit(T x) {
  return (x == 0 ? -1 : 63 - __builtin_clzll(x));
}
template <class T>
int lowbit(T x) {
  return (x == 0 ? -1 : __builtin_ctzll(x));
}
#line 8 "template/template.hpp"

#line 2 "template/inout.hpp"
struct Fast {
  Fast() {
    cin.tie(nullptr);
    ios_base::sync_with_stdio(false);
    cout << fixed << setprecision(15);
  }
} fast;

template <class T1, class T2>
istream &operator>>(istream &is, pair<T1, T2> &p) {
  return is >> p.first >> p.second;
}
template <class T1, class T2>
ostream &operator<<(ostream &os, const pair<T1, T2> &p) {
  return os << p.first << " " << p.second;
}
template <class T>
istream &operator>>(istream &is, vector<T> &a) {
  for (auto &v : a) is >> v;
  return is;
}
template <class T>
ostream &operator<<(ostream &os, const vector<T> &a) {
  for (auto it = a.begin(); it != a.end();) {
    os << *it;
    if (++it != a.end()) os << " ";
  }
  return os;
}
template <class T>
ostream &operator<<(ostream &os, const set<T> &st) {
  os << "{";
  for (auto it = st.begin(); it != st.end();) {
    os << *it;
    if (++it != st.end()) os << ",";
  }
  os << "}";
  return os;
}
template <class T1, class T2>
ostream &operator<<(ostream &os, const map<T1, T2> &mp) {
  os << "{";
  for (auto it = mp.begin(); it != mp.end();) {
    os << it->first << ":" << it->second;
    if (++it != mp.end()) os << ",";
  }
  os << "}";
  return os;
}

void in() {}
template <typename T, class... U>
void in(T &t, U &...u) {
  cin >> t;
  in(u...);
}
void out() { cout << "\n"; }
template <typename T, class... U, char sep = ' '>
void out(const T &t, const U &...u) {
  cout << t;
  if (sizeof...(u)) cout << sep;
  out(u...);
}
#line 10 "template/template.hpp"

#line 2 "template/debug.hpp"
#ifdef LOCAL
#define debug 1
#define show(...) _show(0, #__VA_ARGS__, __VA_ARGS__)
#else
#define debug 0
#define show(...) true
#endif
template <class T>
void _show(int i, T name) {
  cerr << '\n';
}
template <class T1, class T2, class... T3>
void _show(int i, const T1 &a, const T2 &b, const T3 &...c) {
  for (; a[i] != ',' && a[i] != '\0'; i++) cerr << a[i];
  cerr << ":" << b << " ";
  _show(i + 1, a, c...);
}
#line 2 "number-theory/enumerate-quotients.hpp"

#line 2 "math/util.hpp"

namespace Math {
template <class T>
T safe_mod(T a, T b) {
  assert(b != 0);
  if (b < 0) a = -a, b = -b;
  a %= b;
  return a >= 0 ? a : a + b;
}
template <class T>
T floor(T a, T b) {
  assert(b != 0);
  if (b < 0) a = -a, b = -b;
  return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T ceil(T a, T b) {
  assert(b != 0);
  if (b < 0) a = -a, b = -b;
  return a > 0 ? (a - 1) / b + 1 : a / b;
}
long long isqrt(long long n) {
  if (n <= 0) return 0;
  long long x = sqrt(n);
  while ((x + 1) * (x + 1) <= n) x++;
  while (x * x > n) x--;
  return x;
}
// return g=gcd(a,b)
// a*x+b*y=g
// - b!=0 -> 0<=x<|b|/g
// - b=0  -> ax=g
template <class T>
T ext_gcd(T a, T b, T& x, T& y) {
  T a0 = a, b0 = b;
  bool sgn_a = a < 0, sgn_b = b < 0;
  if (sgn_a) a = -a;
  if (sgn_b) b = -b;
  if (b == 0) {
    x = sgn_a ? -1 : 1;
    y = 0;
    return a;
  }
  T x00 = 1, x01 = 0, x10 = 0, x11 = 1;
  while (b != 0) {
    T q = a / b, r = a - b * q;
    x00 -= q * x01;
    x10 -= q * x11;
    swap(x00, x01);
    swap(x10, x11);
    a = b, b = r;
  }
  x = x00, y = x10;
  if (sgn_a) x = -x;
  if (sgn_b) y = -y;
  if (b0 != 0) {
    a0 /= a, b0 /= a;
    if (b0 < 0) a0 = -a0, b0 = -b0;
    T q = x >= 0 ? x / b0 : (x + 1) / b0 - 1;
    x -= b0 * q;
    y += a0 * q;
  }
  return a;
}
template <class T>
T inv_mod(T x, T m) {
  x %= m;
  if (x < 0) x += m;
  T a = m, b = x;
  T y0 = 0, y1 = 1;
  while (b > 0) {
    T q = a / b;
    swap(a -= q * b, b);
    swap(y0 -= q * y1, y1);
  }
  if (y0 < 0) y0 += m / a;
  return y0;
}
template <class T>
T pow_mod(T x, T n, T m) {
  x = (x % m + m) % m;
  T y = 1;
  while (n) {
    if (n & 1) y = y * x % m;
    x = x * x % m;
    n >>= 1;
  }
  return y;
}
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
  if (m == 1) return 0;
  unsigned int _m = (unsigned int)(m);
  unsigned long long r = 1;
  unsigned long long y = x % m;
  if (y >= m) y += m;
  while (n) {
    if (n & 1) r = (r * y) % _m;
    y = (y * y) % _m;
    n >>= 1;
  }
  return r;
}
};  // namespace Math
#line 4 "number-theory/enumerate-quotients.hpp"

namespace EnumerateQuotients {
using i64 = int64_t;
i64 div(i64 a, i64 b) { return double(a) / b; };
vector<i64> table(i64 N) {
  i64 sq = Math::isqrt(N);
  vector<i64> xs(sq);
  iota(xs.begin(), xs.end(), 1);
  if (N <= 1e12) {
    for (i64 i = div(N, sq + 1); i > 0; i--) xs.push_back(div(N, i));
  } else {
    for (i64 i = N / (sq + 1); i > 0; i--) xs.push_back(N / i);
  }
  return xs;
}
pair<i64, i64> get_range(i64 N, i64 q) {
  return N <= 1e12 ? pair<i64, i64>{div(N, q + 1), div(N, q)} : pair<i64, i64>{N / (q + 1), N / q};
}
template <class F>
void iterate(i64 N, F f) {
  i64 sq = Math::isqrt(N);
  vector<i64> xs;
  if (N <= 1e12) {
    i64 x = N;
    for (i64 q = 1; x <= sq; q++) {
      i64 y = div(N, q + 1);
      f(q, y, x);
      x = y;
    }
    for (; x > 0; x--) f(div(N, x), x - 1, x);
  } else {
    i64 x = N;
    for (i64 q = 1; x <= sq; q++) {
      i64 y = N / (q + 1);
      f(q, y, x);
      x = y;
    }
    for (; x > 0; x--) f(N / x, x - 1, x);
  }
}
};  // namespace EnumerateQuotients

/**
 * @brief 商の列挙
 * @docs docs/number-theory/enumerate-quotients.md
 */
#line 5 "verify/number-theory/LC_enumerate_quotients.test.cpp"

int main() {
  ll n;
  in(n);
  auto qs = EnumerateQuotients::table(n);
  out(qs.size());
  out(qs);
}
Back to top page