多項式版 floor sum
(math/polynomial-floor-sum.hpp)
- View this file on GitHub
- Last update: 2025-10-17 21:43:09+09:00
- Include:
#include "math/polynomial-floor-sum.hpp"
使い方
以下の問題を $O(pq(p+q)\log m)$ 時間で解く.
整数 $l,r,m,a,b\ (m\neq 0)$ および非負整数 $p,q$ に対し以下の値を求めよ: \(f_{p,q}(l,r,m,a,b)=\sum_{i=l}^{r-1}i^p\left\lfloor\frac{ai+b}{m}\right\rfloor^q\)
型 U は $an+b$ が正しく計算できる必要がある.
Depends on
Code
#pragma once
#include "math/util.hpp"
#include "math/floor-monoid-product.hpp"
template <class T, int D1, int D2>
struct PolynomialFloorSumMonoid {
static constexpr int D = max(D1, D2);
using M = PolynomialFloorSumMonoid;
using P = array<array<T, D2 + 1>, D1 + 1>;
T x, y;
P f;
static M e() { return {0, 0, P{}}; }
static M op(M a, M b) {
static T binom[D + 1][D + 1];
if (binom[0][0] != T(1)) {
binom[0][0] = T(1);
for (int i = 0; i < D; i++)
for (int j = 0; j <= i; j++) {
binom[i + 1][j] += binom[i][j];
binom[i + 1][j + 1] += binom[i][j];
}
}
T pow_x[D1 + 1], pow_y[D2 + 1];
pow_x[0] = 1, pow_y[0] = 1;
for (int i = 0; i < D1; i++) pow_x[i + 1] = pow_x[i] * a.x;
for (int i = 0; i < D2; i++) pow_y[i + 1] = pow_y[i] * a.y;
for (int i = 0; i <= D1; i++)
for (int j = 0; j <= D2; j++) {
T v = b.f[i][j];
for (int k = i + 1; k <= D1; k++)
b.f[k][j] += v * pow_x[k - i] * binom[k][i];
}
for (int i = 0; i <= D1; i++)
for (int j = 0; j <= D2; j++) {
T v = b.f[i][j];
for (int k = j; k <= D2; k++)
a.f[i][k] += v * pow_y[k - j] * binom[k][j];
}
return {a.x + b.x, a.y + b.y, a.f};
}
static M elm_x() {
M t = e();
t.x = 1, t.f[0][0] = 1;
return t;
}
static M elm_y() {
M t = e();
t.y = 1;
return t;
}
};
// enumerate sum{k=l}^{r-1}k^i*floor((a*k+b)/m))^j
template <class T, int D1, int D2, std::signed_integral I = int64_t>
array<array<T, D2 + 1>, D1 + 1> PolynomialFloorSum(I l, I r, I m, I a, I b) {
assert(l <= r && m != 0);
using U = conditional_t<is_same_v<I, __int128_t>, __uint128_t, uint64_t>;
using M = PolynomialFloorSumMonoid<T, D1, D2>;
using P = array<array<T, D2 + 1>, D1 + 1>;
if (m < 0) m = -m, a = -a, b = -b;
if (a < 0) {
P c = PolynomialFloorSum<T, D1, D2, I>(-r + 1, -l + 1, m, -a, b);
for (int i = 1; i <= D1; i += 2)
for (int j = 0; j <= D2; j++)
c[i][j] = -c[i][j];
return c;
}
b += a * l;
I q = Math::floor(b, m);
b -= q * m;
M t = M::e();
t.x = l, t.y = q;
M z = FloorMonoidProduct<M, M::op, M::e, U>(r - l, m, a, b, M::elm_x(), M::elm_y());
return M::op(t, z).f;
}
// P(x,y): 2 variables polynomial, deg_x(P)<=D1, deg_y(Q)<=D2
// find sum{k=0}^{n-1}P(k,floor((a*k+b)/m))
template <class T, int D1, int D2, std::signed_integral I = int64_t>
T PolynomialFloorSum(array<array<T, D2 + 1>, D1 + 1> poly, I l, I r, I m, I a, I b) {
using M = PolynomialFloorSumMonoid<T, D1, D2>;
auto c = PolynomialFloorSum<T, D1, D2, I>(l, r, m, a, b);
T res = 0;
for (int i = 0; i <= D1; i++)
for (int j = 0; j <= D2; j++)
res += poly[i][j] * c[i][j];
return res;
}
/**
* @brief 多項式版 floor sum
* @docs docs/math/polynomial-floor-sum.md
*/#line 2 "math/util.hpp"
namespace Math {
template <class T>
T safe_mod(T a, T b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
a %= b;
return a >= 0 ? a : a + b;
}
template <class T>
T floor(T a, T b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
return a >= 0 ? a / b : (a + 1) / b - 1;
}
template <class T>
T ceil(T a, T b) {
assert(b != 0);
if (b < 0) a = -a, b = -b;
return a > 0 ? (a - 1) / b + 1 : a / b;
}
long long isqrt(long long n) {
if (n <= 0) return 0;
long long x = sqrt(n);
while ((x + 1) * (x + 1) <= n) x++;
while (x * x > n) x--;
return x;
}
// return g=gcd(a,b)
// a*x+b*y=g
// - b!=0 -> 0<=x<|b|/g
// - b=0 -> ax=g
template <class T>
T ext_gcd(T a, T b, T& x, T& y) {
T a0 = a, b0 = b;
bool sgn_a = a < 0, sgn_b = b < 0;
if (sgn_a) a = -a;
if (sgn_b) b = -b;
if (b == 0) {
x = sgn_a ? -1 : 1;
y = 0;
return a;
}
T x00 = 1, x01 = 0, x10 = 0, x11 = 1;
while (b != 0) {
T q = a / b, r = a - b * q;
x00 -= q * x01;
x10 -= q * x11;
swap(x00, x01);
swap(x10, x11);
a = b, b = r;
}
x = x00, y = x10;
if (sgn_a) x = -x;
if (sgn_b) y = -y;
if (b0 != 0) {
a0 /= a, b0 /= a;
if (b0 < 0) a0 = -a0, b0 = -b0;
T q = x >= 0 ? x / b0 : (x + 1) / b0 - 1;
x -= b0 * q;
y += a0 * q;
}
return a;
}
template <class T>
T inv_mod(T x, T m) {
x %= m;
if (x < 0) x += m;
T a = m, b = x;
T y0 = 0, y1 = 1;
while (b > 0) {
T q = a / b;
swap(a -= q * b, b);
swap(y0 -= q * y1, y1);
}
if (y0 < 0) y0 += m / a;
return y0;
}
template <class T>
T pow_mod(T x, T n, T m) {
x = (x % m + m) % m;
T y = 1;
while (n) {
if (n & 1) y = y * x % m;
x = x * x % m;
n >>= 1;
}
return y;
}
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = x % m;
if (y >= m) y += m;
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
}; // namespace Math
#line 2 "math/floor-monoid-product.hpp"
template <class T, T (*op)(T, T), T (*e)(), std::unsigned_integral U = uint64_t>
T FloorMonoidProduct(U n, U m, U a, U b, T x, T y, function<T(T, U)> pow = nullptr) {
if (!pow) {
pow = [](T t, U n) {
T p = e();
while (n) {
if (n & 1) p = op(p, t);
t = op(t, t);
n >>= 1;
}
return p;
};
}
assert(m != 0);
T pl = e(), pr = e();
while (true) {
if (a >= m) {
U q = a / m;
x = op(x, pow(y, q));
a -= m * q;
}
if (b >= m) {
U q = b / m;
pl = op(pl, pow(y, q));
b -= m * q;
}
U c = a * n + b;
if (c < m) {
pl = op(pl, pow(x, n));
break;
}
pr = op(op(y, pow(x, c % m / a)), pr);
n = c / m - 1;
b = m + a - b - 1;
swap(a, m);
swap(x, y);
}
return op(pl, pr);
}
/**
* @brief モノイド版 Floor Sum
* @docs docs/math/floor-monoid-product.md
*/
#line 4 "math/polynomial-floor-sum.hpp"
template <class T, int D1, int D2>
struct PolynomialFloorSumMonoid {
static constexpr int D = max(D1, D2);
using M = PolynomialFloorSumMonoid;
using P = array<array<T, D2 + 1>, D1 + 1>;
T x, y;
P f;
static M e() { return {0, 0, P{}}; }
static M op(M a, M b) {
static T binom[D + 1][D + 1];
if (binom[0][0] != T(1)) {
binom[0][0] = T(1);
for (int i = 0; i < D; i++)
for (int j = 0; j <= i; j++) {
binom[i + 1][j] += binom[i][j];
binom[i + 1][j + 1] += binom[i][j];
}
}
T pow_x[D1 + 1], pow_y[D2 + 1];
pow_x[0] = 1, pow_y[0] = 1;
for (int i = 0; i < D1; i++) pow_x[i + 1] = pow_x[i] * a.x;
for (int i = 0; i < D2; i++) pow_y[i + 1] = pow_y[i] * a.y;
for (int i = 0; i <= D1; i++)
for (int j = 0; j <= D2; j++) {
T v = b.f[i][j];
for (int k = i + 1; k <= D1; k++)
b.f[k][j] += v * pow_x[k - i] * binom[k][i];
}
for (int i = 0; i <= D1; i++)
for (int j = 0; j <= D2; j++) {
T v = b.f[i][j];
for (int k = j; k <= D2; k++)
a.f[i][k] += v * pow_y[k - j] * binom[k][j];
}
return {a.x + b.x, a.y + b.y, a.f};
}
static M elm_x() {
M t = e();
t.x = 1, t.f[0][0] = 1;
return t;
}
static M elm_y() {
M t = e();
t.y = 1;
return t;
}
};
// enumerate sum{k=l}^{r-1}k^i*floor((a*k+b)/m))^j
template <class T, int D1, int D2, std::signed_integral I = int64_t>
array<array<T, D2 + 1>, D1 + 1> PolynomialFloorSum(I l, I r, I m, I a, I b) {
assert(l <= r && m != 0);
using U = conditional_t<is_same_v<I, __int128_t>, __uint128_t, uint64_t>;
using M = PolynomialFloorSumMonoid<T, D1, D2>;
using P = array<array<T, D2 + 1>, D1 + 1>;
if (m < 0) m = -m, a = -a, b = -b;
if (a < 0) {
P c = PolynomialFloorSum<T, D1, D2, I>(-r + 1, -l + 1, m, -a, b);
for (int i = 1; i <= D1; i += 2)
for (int j = 0; j <= D2; j++)
c[i][j] = -c[i][j];
return c;
}
b += a * l;
I q = Math::floor(b, m);
b -= q * m;
M t = M::e();
t.x = l, t.y = q;
M z = FloorMonoidProduct<M, M::op, M::e, U>(r - l, m, a, b, M::elm_x(), M::elm_y());
return M::op(t, z).f;
}
// P(x,y): 2 variables polynomial, deg_x(P)<=D1, deg_y(Q)<=D2
// find sum{k=0}^{n-1}P(k,floor((a*k+b)/m))
template <class T, int D1, int D2, std::signed_integral I = int64_t>
T PolynomialFloorSum(array<array<T, D2 + 1>, D1 + 1> poly, I l, I r, I m, I a, I b) {
using M = PolynomialFloorSumMonoid<T, D1, D2>;
auto c = PolynomialFloorSum<T, D1, D2, I>(l, r, m, a, b);
T res = 0;
for (int i = 0; i <= D1; i++)
for (int j = 0; j <= D2; j++)
res += poly[i][j] * c[i][j];
return res;
}
/**
* @brief 多項式版 floor sum
* @docs docs/math/polynomial-floor-sum.md
*/