Relaxed
(fps/relaxed.hpp)
- View this file on GitHub
- Last update: 2025-10-26 03:52:03+09:00
- Include:
#include "fps/relaxed.hpp"
多項式 $f(x),g(x)$ について $i=0,1,\dots$ について順に以下を処理する.
$[x^i]f(x),[x^i]g(x)$ が新しく与えられる.$[x^i]f(x)g(x)$ を返す.
$N$ 次まで求めるとき $O(N(\log N)^2)$ 時間.
$g$ がはじめからわかっている場合 (semi-relaxed convolution) は定数倍が改善できる.
また inv/exp/log/sqrt なども積と同じ計算量で求められる.
積
適切に分割してまとめて計算する.
通常の畳み込みよりも middle product の方が相性がよい.
- https://qiita.com/Kiri8128/items/1738d5403764a0e26b4c
上の資料で middle product の項で提示されている形よりは以下の形の方が扱いやすいはず

inv / FPS 除算
より一般に $h(x)=f(x)/g(x)$ を求めることができる($[x^0]g(x)\neq 0$).
$f=gh$ より任意の $i$ に対し
\[h_i=\frac{1}{g_0}\left(f_i-\sum_{j=0}^{i-1}h_{i-1-j}g_{j+1}\right)\]であるから積の計算に帰着される(特に定数倍は変化しない).
exp
$g(x)=\exp f(x)\ ([x^0]f(x)=0)$ のとき $g_0=1$ である.また $g’=f’g$ より $1$ 次以上の部分は積の計算に帰着される.
log
$g(x)=\log f(x)\ ([x^0]f(x)=1)$ のとき $g_0=0$ である.また $g’=f’/f$ より $1$ 次以上の部分は FPS の除算に帰着される.
sqrt
$g(x)=\sqrt{f(x)}\ ([x^0]f(x)\neq 0)$ のとき $g_0=\sqrt{f_0}$ である.また $g^2=f$ より $i\geq 1$ について
\[2g_0g_i+\sum_{j=1}^{i-1}g_jg_{i-j}=f_i\]であるから積の計算に帰着できる.
Depends on
Verified with
verify/fps/LC_convolution_mod.relaxed.test.cpp
verify/fps/LC_convolution_mod.semirelaxed.test.cpp
verify/fps/LC_exp_of_formal_power_series.relaxed.test.cpp
verify/fps/LC_inv_of_formal_power_series.relaxed.test.cpp
verify/fps/LC_log_of_formal_power_series.relaxed.test.cpp
verify/fps/LC_sqrt_of_formal_power_series.relaxed.test.cpp
Code
#pragma once
#include "modint/factorial.hpp"
#include "fps/formal-power-series.hpp"
#include "modint/mod-sqrt.hpp"
template <class mint>
class RelaxedMultiply {
const int B = 6;
using fps = FormalPowerSeries<mint>;
int n;
fps f, g, h;
vector<fps> f0, g0;
public:
RelaxedMultiply() : n(0), f(1), g(1), f0(B), g0(B) {}
mint append(mint a, mint b) {
f[n] = a, g[n] = b;
n++;
int m = n & -n;
int l = __builtin_ctz((unsigned int)m);
if (n == m) {
f.resize(2 * m);
g.resize(2 * m);
h.resize(2 * m);
if (l < B) {
for (int i = 0; i < m; i++)
for (int j = m - 1 - i; j < m; j++)
h[i + j] += f[i] * g[j];
} else {
auto f1 = f;
f1.ntt();
f0.push_back(fps(f1.begin(), f1.begin() + m));
auto g1 = g;
g1.ntt();
g0.push_back(fps(g1.begin(), g1.begin() + m));
for (int i = 0; i < 2 * m; i++) f1[i] *= g1[i];
f1.intt();
for (int i = m - 1; i < 2 * m - 1; i++) h[i] += f1[i];
}
} else {
if (l < B) {
int s = n - m;
for (int i = 0; i < m; i++) {
int t = m - 1 - i;
for (int j = 0; j < m; j++)
h[n - 1 + j] += f[s + i] * g[t + j] + g[s + i] * f[t + j];
}
} else {
fps f1(2 * m), g1(2 * m), h1(2 * m);
copy(f.begin() + (n - m), f.begin() + n, f1.begin());
copy(g.begin() + (n - m), g.begin() + n, g1.begin());
f1.ntt(), g1.ntt();
for (int i = 0; i < 2 * m; i++) h1[i] += f1[i] * g0[l + 1][i] + f0[l + 1][i] * g1[i];
h1.intt();
for (int i = m - 1; i < 2 * m - 1; i++) h[n - m + i] += h1[i];
}
}
return h[n - 1];
}
};
template <class mint>
class SemiRelaxedMultiply {
const int B = 6;
using fps = FormalPowerSeries<mint>;
int n, m0;
fps f, g, h;
vector<fps> g0;
public:
SemiRelaxedMultiply(const fps& g_) : n(0), m0(1 << B), f(1), g(g_) {
while (m0 < g.size()) m0 <<= 1;
g.resize(m0);
for (int k = 1; k <= m0; k <<= 1) {
fps g1(2 * k);
copy(g.begin(), g.begin() + min(2 * k, m0), g1.begin());
g1.ntt();
g0.push_back(g1);
}
}
mint append(mint a) {
f[n] = a;
n++;
int m = n & -n;
int l = __builtin_ctz((unsigned int)m);
if (n == m) {
f.resize(2 * m);
h.resize(2 * m);
}
while (l >= g0.size()) {
g0.push_back(g0.back());
g0.back().ntt_doubling();
}
if (l < B) {
int s = n - m;
for (int i = 0; i < m; i++) {
int t = m - 1 - i;
for (int j = 0; j < m; j++)
h[n - 1 + j] += f[s + i] * g[t + j];
}
} else {
fps f1(2 * m);
copy(f.begin() + (n - m), f.begin() + n, f1.begin());
f1.ntt();
for (int i = 0; i < 2 * m; i++) f1[i] *= g0[l][i];
f1.intt();
for (int i = m - 1; i < 2 * m - 1; i++) h[n - m + i] += f1[i];
}
return h[n - 1];
}
};
// f(x)/g(x)
template <class mint>
class RelaxedDivide {
RelaxedMultiply<mint> mul;
int n;
mint c, v;
public:
RelaxedDivide() : n(0) {}
mint append(mint a, mint b) { return v = n++ == 0 ? a * (c = b.inv()) : (a - mul.append(v, b)) * c; }
};
template <class mint>
class RelaxedInv {
RelaxedMultiply<mint> mul;
int n;
mint c, v;
public:
RelaxedInv() : n(0) {}
mint append(mint a) { return v = n++ == 0 ? (c = a.inv()) : -mul.append(v, a) * c; }
};
template <class mint>
class RelaxedExp {
using fact = Factorial<mint>;
RelaxedMultiply<mint> mul;
int n;
mint v;
public:
RelaxedExp() : n(0) {}
mint append(mint a) {
if (n++ == 0) {
assert(a == 0);
v = 1;
} else {
v = mul.append((n - 1) * a, v) * fact::inv(n - 1);
}
return v;
}
};
template <class mint>
class RelaxedLog {
using fact = Factorial<mint>;
RelaxedMultiply<mint> mul;
int n;
mint a0, v;
public:
RelaxedLog() : n(0) {}
mint append(mint a) {
if (n == 0) {
assert(a == 1);
n++;
return 0;
} else if (n == 1) {
a0 = a, n++;
return v = a;
} else {
v = n * a - mul.append(v, a0);
a0 = a;
return v * fact::inv(n++);
}
}
};
template <class mint>
class RelaxedSqrt {
RelaxedMultiply<mint> mul;
int n;
mint c, v;
public:
RelaxedSqrt() : n(0) {}
mint append(mint a) {
if (n == 0) {
long long sq = ModSqrt(a.val(), mint::get_mod());
assert(sq != -1 && sq != 0);
c = mint(2 * sq).inv();
n++;
return sq;
} else {
return v = (n++ == 1 ? a : a - mul.append(v, v)) * c;
}
}
};
/**
* @brief Relaxed
* @docs docs/fps/relaxed.md
*/#line 2 "modint/factorial.hpp"
template <class mint>
struct Factorial {
static void reserve(int n) {
inv(n);
fact(n);
fact_inv(n);
}
static mint inv(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({0, 1});
assert(n != 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({0, 1});
}
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size(), q = (mod + k - 1) / k;
buf.push_back(q * buf[k * q - mod]);
}
return buf[n];
}
static mint fact(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({1, 1});
assert(n >= 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({1, 1});
}
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size();
buf.push_back(buf.back() * k);
}
return buf[n];
}
static mint fact_inv(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({1, 1});
assert(n >= 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({1, 1});
}
if ((int)buf.size() <= n) inv(n);
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size();
buf.push_back(buf.back() * inv(k));
}
return buf[n];
}
static mint binom(int n, int r) {
if (r < 0 || r > n) return 0;
return fact(n) * fact_inv(r) * fact_inv(n - r);
}
static mint binom_naive(int n, int r) {
if (r < 0 || r > n) return 0;
mint res = fact_inv(r);
for (int i = 0; i < r; i++) res *= n - i;
return res;
}
static mint multinom(const vector<int>& r) {
int n = 0;
for (auto& x : r) {
if (x < 0) return 0;
n += x;
}
mint res = fact(n);
for (auto& x : r) res *= fact_inv(x);
return res;
}
static mint P(int n, int r) {
if (r < 0 || r > n) return 0;
return fact(n) * fact_inv(n - r);
}
// partition n items to r groups (allow empty group)
static mint H(int n, int r) {
if (n < 0 || r < 0) return 0;
return r == 0 ? 1 : binom(n + r - 1, r);
}
};
/**
* @brief 階乗, 二項係数
*/
#line 2 "fps/formal-power-series.hpp"
template <class mint>
struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using FPS = FormalPowerSeries;
FPS &operator+=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
FPS &operator+=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
FPS &operator-=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
return *this;
}
FPS &operator-=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
FPS &operator*=(const mint &v) {
for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
return *this;
}
FPS &operator/=(const FPS &r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
if ((int)r.size() <= 64) {
FPS f(*this), g(r);
g.shrink();
mint coeff = g.at(g.size() - 1).inv();
for (auto &x : g) x *= coeff;
int deg = (int)f.size() - (int)g.size() + 1;
int gs = g.size();
FPS quo(deg);
for (int i = deg - 1; i >= 0; i--) {
quo[i] = f[i + gs - 1];
for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
}
*this = quo * coeff;
this->resize(n, mint(0));
return *this;
}
return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
}
FPS &operator%=(const FPS &r) {
*this -= *this / r * r;
shrink();
return *this;
}
FPS operator+(const FPS &r) const { return FPS(*this) += r; }
FPS operator+(const mint &v) const { return FPS(*this) += v; }
FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
FPS operator-(const mint &v) const { return FPS(*this) -= v; }
FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
FPS operator*(const mint &v) const { return FPS(*this) *= v; }
FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
FPS operator-() const {
FPS ret(this->size());
for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
void shrink() {
while (this->size() && this->back() == mint(0)) this->pop_back();
}
FPS rev() const {
FPS ret(*this);
reverse(begin(ret), end(ret));
return ret;
}
FPS dot(FPS r) const {
FPS ret(min(this->size(), r.size()));
for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
FPS pre(int sz) const {
return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));
}
FPS operator>>=(int sz) {
assert(sz >= 0);
if ((int)this->size() <= sz) return {};
this->erase(this->begin(), this->begin() + sz);
return *this;
}
FPS operator>>(int sz) const {
if ((int)this->size() <= sz) return {};
FPS ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
FPS operator<<=(int sz) {
assert(sz >= 0);
this->insert(this->begin(), sz, mint(0));
return *this;
}
FPS operator<<(int sz) const {
FPS ret(*this);
ret.insert(ret.begin(), sz, mint(0));
return ret;
}
FPS diff() const {
const int n = (int)this->size();
FPS ret(max(0, n - 1));
mint one(1), coeff(1);
for (int i = 1; i < n; i++) {
ret[i - 1] = (*this)[i] * coeff;
coeff += one;
}
return ret;
}
FPS integral() const {
const int n = (int)this->size();
FPS ret(n + 1);
ret[0] = mint(0);
if (n > 0) ret[1] = mint(1);
auto mod = mint::get_mod();
for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
return ret;
}
mint eval(mint x) const {
mint r = 0, w = 1;
for (auto &v : *this) r += w * v, w *= x;
return r;
}
FPS log(int deg = -1) const {
assert((*this)[0] == mint(1));
if (deg == -1) deg = (int)this->size();
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
FPS pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
if (k == 0) {
FPS ret(deg);
if (deg) ret[0] = 1;
return ret;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != mint(0)) {
mint rev = mint(1) / (*this)[i];
FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
ret *= (*this)[i].pow(k);
ret = (ret << (i * k)).pre(deg);
if ((int)ret.size() < deg) ret.resize(deg, mint(0));
return ret;
}
if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
}
return FPS(deg, mint(0));
}
static void *ntt_ptr;
static void set_ntt();
FPS &operator*=(const FPS &r);
FPS middle_product(const FPS &r) const;
void ntt();
void intt();
void ntt_doubling();
static int ntt_root();
FPS inv(int deg = -1) const;
FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;
#line 2 "modint/mod-sqrt.hpp"
#line 2 "modint/mod-pow.hpp"
unsigned int ModPow(unsigned int a, unsigned long long n, unsigned int m) {
unsigned long long x = a, y = 1;
while (n) {
if (n & 1) y = y * x % m;
x = x * x % m;
n >>= 1;
}
return y;
}
#line 4 "modint/mod-sqrt.hpp"
long long ModSqrt(long long a, long long p) {
if (a >= p) a %= p;
if (p == 2) return a & 1;
if (a == 0) return 0;
if (ModPow(a, (p - 1) / 2, p) != 1) return -1;
if (p % 4 == 3) return ModPow(a, (3 * p - 1) / 4, p);
unsigned int z = 2, q = p - 1;
while (ModPow(z, (p - 1) / 2, p) == 1) z++;
int s = 0;
while (!(q & 1)) {
s++;
q >>= 1;
}
int m = s;
unsigned int c = ModPow(z, q, p);
unsigned int t = ModPow(a, q, p);
unsigned int r = ModPow(a, (q + 1) / 2, p);
while (true) {
if (t == 1) return r;
unsigned int pow = t;
int j = 1;
for (; j < m; j++) {
pow = 1ll * pow * pow % p;
if (pow == 1) break;
}
unsigned int b = c;
for (int i = 0; i < m - j - 1; i++) b = 1ll * b * b % p;
m = j;
c = 1ll * b * b % p;
t = 1ll * t * c % p;
r = 1ll * r * b % p;
}
}
#line 5 "fps/relaxed.hpp"
template <class mint>
class RelaxedMultiply {
const int B = 6;
using fps = FormalPowerSeries<mint>;
int n;
fps f, g, h;
vector<fps> f0, g0;
public:
RelaxedMultiply() : n(0), f(1), g(1), f0(B), g0(B) {}
mint append(mint a, mint b) {
f[n] = a, g[n] = b;
n++;
int m = n & -n;
int l = __builtin_ctz((unsigned int)m);
if (n == m) {
f.resize(2 * m);
g.resize(2 * m);
h.resize(2 * m);
if (l < B) {
for (int i = 0; i < m; i++)
for (int j = m - 1 - i; j < m; j++)
h[i + j] += f[i] * g[j];
} else {
auto f1 = f;
f1.ntt();
f0.push_back(fps(f1.begin(), f1.begin() + m));
auto g1 = g;
g1.ntt();
g0.push_back(fps(g1.begin(), g1.begin() + m));
for (int i = 0; i < 2 * m; i++) f1[i] *= g1[i];
f1.intt();
for (int i = m - 1; i < 2 * m - 1; i++) h[i] += f1[i];
}
} else {
if (l < B) {
int s = n - m;
for (int i = 0; i < m; i++) {
int t = m - 1 - i;
for (int j = 0; j < m; j++)
h[n - 1 + j] += f[s + i] * g[t + j] + g[s + i] * f[t + j];
}
} else {
fps f1(2 * m), g1(2 * m), h1(2 * m);
copy(f.begin() + (n - m), f.begin() + n, f1.begin());
copy(g.begin() + (n - m), g.begin() + n, g1.begin());
f1.ntt(), g1.ntt();
for (int i = 0; i < 2 * m; i++) h1[i] += f1[i] * g0[l + 1][i] + f0[l + 1][i] * g1[i];
h1.intt();
for (int i = m - 1; i < 2 * m - 1; i++) h[n - m + i] += h1[i];
}
}
return h[n - 1];
}
};
template <class mint>
class SemiRelaxedMultiply {
const int B = 6;
using fps = FormalPowerSeries<mint>;
int n, m0;
fps f, g, h;
vector<fps> g0;
public:
SemiRelaxedMultiply(const fps& g_) : n(0), m0(1 << B), f(1), g(g_) {
while (m0 < g.size()) m0 <<= 1;
g.resize(m0);
for (int k = 1; k <= m0; k <<= 1) {
fps g1(2 * k);
copy(g.begin(), g.begin() + min(2 * k, m0), g1.begin());
g1.ntt();
g0.push_back(g1);
}
}
mint append(mint a) {
f[n] = a;
n++;
int m = n & -n;
int l = __builtin_ctz((unsigned int)m);
if (n == m) {
f.resize(2 * m);
h.resize(2 * m);
}
while (l >= g0.size()) {
g0.push_back(g0.back());
g0.back().ntt_doubling();
}
if (l < B) {
int s = n - m;
for (int i = 0; i < m; i++) {
int t = m - 1 - i;
for (int j = 0; j < m; j++)
h[n - 1 + j] += f[s + i] * g[t + j];
}
} else {
fps f1(2 * m);
copy(f.begin() + (n - m), f.begin() + n, f1.begin());
f1.ntt();
for (int i = 0; i < 2 * m; i++) f1[i] *= g0[l][i];
f1.intt();
for (int i = m - 1; i < 2 * m - 1; i++) h[n - m + i] += f1[i];
}
return h[n - 1];
}
};
// f(x)/g(x)
template <class mint>
class RelaxedDivide {
RelaxedMultiply<mint> mul;
int n;
mint c, v;
public:
RelaxedDivide() : n(0) {}
mint append(mint a, mint b) { return v = n++ == 0 ? a * (c = b.inv()) : (a - mul.append(v, b)) * c; }
};
template <class mint>
class RelaxedInv {
RelaxedMultiply<mint> mul;
int n;
mint c, v;
public:
RelaxedInv() : n(0) {}
mint append(mint a) { return v = n++ == 0 ? (c = a.inv()) : -mul.append(v, a) * c; }
};
template <class mint>
class RelaxedExp {
using fact = Factorial<mint>;
RelaxedMultiply<mint> mul;
int n;
mint v;
public:
RelaxedExp() : n(0) {}
mint append(mint a) {
if (n++ == 0) {
assert(a == 0);
v = 1;
} else {
v = mul.append((n - 1) * a, v) * fact::inv(n - 1);
}
return v;
}
};
template <class mint>
class RelaxedLog {
using fact = Factorial<mint>;
RelaxedMultiply<mint> mul;
int n;
mint a0, v;
public:
RelaxedLog() : n(0) {}
mint append(mint a) {
if (n == 0) {
assert(a == 1);
n++;
return 0;
} else if (n == 1) {
a0 = a, n++;
return v = a;
} else {
v = n * a - mul.append(v, a0);
a0 = a;
return v * fact::inv(n++);
}
}
};
template <class mint>
class RelaxedSqrt {
RelaxedMultiply<mint> mul;
int n;
mint c, v;
public:
RelaxedSqrt() : n(0) {}
mint append(mint a) {
if (n == 0) {
long long sq = ModSqrt(a.val(), mint::get_mod());
assert(sq != -1 && sq != 0);
c = mint(2 * sq).inv();
n++;
return sq;
} else {
return v = (n++ == 1 ? a : a - mul.append(v, v)) * c;
}
}
};
/**
* @brief Relaxed
* @docs docs/fps/relaxed.md
*/