多項式の Prefix Sum
(fps/prefix-sum-of-polynomial.hpp)
- View this file on GitHub
- Last update: 2025-10-25 18:30:13+09:00
- Include:
#include "fps/prefix-sum-of-polynomial.hpp"
多項式 $f$ について $g(n)=\sum_{i=0}^{n}f(i)$ を満たす多項式 $g$ を求める.
$d=\deg f$ として $O(d\log d)$ 時間.
アルゴリズム
Bernoulli 数 $B_i=\left[\frac{x^i}{i!}\right]\dfrac{xe^x}{e^x-1}$ を用いると以下が成り立つ.
\[\begin{align*} \sum_{i=1}^{n}i^k &=k![x^k]\sum_{i=1}^{n}e^{ix}\\ &=k![x^k]\frac{(e^{nx}-1)e^x}{e^x-1}\\ &=k![x^k]\frac{e^{nx}-1}{x}\cdot\frac{xe^x}{e^x-1}\\ &=k!\sum_{i=0}^{k}\frac{n^{i+1}}{(i+1)!}\cdot\frac{B_{k-i}}{(k-i)!} \end{align*}\]これは Faulhaber の公式として知られている.
$f(x)=\sum_{i=0}^{d-1}f_ix^i$ とすると,上の結果から $1\leq l\leq d$ に対して
\[\begin{align*} [x^l]g(x) &=\frac{1}{l!}\sum_{k=l-1}^{d-1}f_kk!\cdot\frac{B_{k-(l-1)}}{(k-(l-1))!}\\ &=\frac{1}{l!}[x^{d-l}]\left(\sum_{i=0}^{d-1}f_ii!\cdot x^{d-1-i}\right)\frac{xe^x}{e^x-1} \end{align*}\]が成り立つ.また $[x^0]g(x)=f_0$ であるから,結局 $g$ は $O(d\log d)$ 時間で計算できる.
- https://codeforces.com/blog/entry/98563
- https://www.codechef.com/problems/SERSUM
Depends on
Verified with
Code
#pragma once
#include "modint/factorial.hpp"
#include "fps/formal-power-series.hpp"
// g(n)=sum_{i=0}^{n}f(i)
template <class mint>
FormalPowerSeries<mint> PrefixSumOfPolynomial(FormalPowerSeries<mint> f) {
if (f.empty()) return {};
using fact = Factorial<mint>;
mint c = f[0];
int d = f.size();
fact::reserve(d);
for (int i = 0; i < d; i++) f[i] *= fact::fact(i);
reverse(f.begin(), f.end());
FormalPowerSeries<mint> g(d);
for (int i = 0; i < d; i++) g[i] = fact::fact_inv(i + 1) * (i & 1 ? -1 : 1);
f *= g.inv();
f.resize(d);
f.push_back(c);
reverse(f.begin(), f.end());
for (int i = 1; i <= d; i++) f[i] *= fact::fact_inv(i);
return f;
}
/**
* @brief 多項式の Prefix Sum
* @docs docs/fps/prefix-sum-of-polynomial.md
*/#line 2 "modint/factorial.hpp"
template <class mint>
struct Factorial {
static void reserve(int n) {
inv(n);
fact(n);
fact_inv(n);
}
static mint inv(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({0, 1});
assert(n != 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({0, 1});
}
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size(), q = (mod + k - 1) / k;
buf.push_back(q * buf[k * q - mod]);
}
return buf[n];
}
static mint fact(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({1, 1});
assert(n >= 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({1, 1});
}
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size();
buf.push_back(buf.back() * k);
}
return buf[n];
}
static mint fact_inv(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({1, 1});
assert(n >= 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({1, 1});
}
if ((int)buf.size() <= n) inv(n);
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size();
buf.push_back(buf.back() * inv(k));
}
return buf[n];
}
static mint binom(int n, int r) {
if (r < 0 || r > n) return 0;
return fact(n) * fact_inv(r) * fact_inv(n - r);
}
static mint binom_naive(int n, int r) {
if (r < 0 || r > n) return 0;
mint res = fact_inv(r);
for (int i = 0; i < r; i++) res *= n - i;
return res;
}
static mint multinom(const vector<int>& r) {
int n = 0;
for (auto& x : r) {
if (x < 0) return 0;
n += x;
}
mint res = fact(n);
for (auto& x : r) res *= fact_inv(x);
return res;
}
static mint P(int n, int r) {
if (r < 0 || r > n) return 0;
return fact(n) * fact_inv(n - r);
}
// partition n items to r groups (allow empty group)
static mint H(int n, int r) {
if (n < 0 || r < 0) return 0;
return r == 0 ? 1 : binom(n + r - 1, r);
}
};
/**
* @brief 階乗, 二項係数
*/
#line 2 "fps/formal-power-series.hpp"
template <class mint>
struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using FPS = FormalPowerSeries;
FPS &operator+=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
FPS &operator+=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
FPS &operator-=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
return *this;
}
FPS &operator-=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
FPS &operator*=(const mint &v) {
for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
return *this;
}
FPS &operator/=(const FPS &r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
if ((int)r.size() <= 64) {
FPS f(*this), g(r);
g.shrink();
mint coeff = g.at(g.size() - 1).inv();
for (auto &x : g) x *= coeff;
int deg = (int)f.size() - (int)g.size() + 1;
int gs = g.size();
FPS quo(deg);
for (int i = deg - 1; i >= 0; i--) {
quo[i] = f[i + gs - 1];
for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
}
*this = quo * coeff;
this->resize(n, mint(0));
return *this;
}
return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
}
FPS &operator%=(const FPS &r) {
*this -= *this / r * r;
shrink();
return *this;
}
FPS operator+(const FPS &r) const { return FPS(*this) += r; }
FPS operator+(const mint &v) const { return FPS(*this) += v; }
FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
FPS operator-(const mint &v) const { return FPS(*this) -= v; }
FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
FPS operator*(const mint &v) const { return FPS(*this) *= v; }
FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
FPS operator-() const {
FPS ret(this->size());
for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
void shrink() {
while (this->size() && this->back() == mint(0)) this->pop_back();
}
FPS rev() const {
FPS ret(*this);
reverse(begin(ret), end(ret));
return ret;
}
FPS dot(FPS r) const {
FPS ret(min(this->size(), r.size()));
for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
FPS pre(int sz) const {
return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));
}
FPS operator>>=(int sz) {
assert(sz >= 0);
if ((int)this->size() <= sz) return {};
this->erase(this->begin(), this->begin() + sz);
return *this;
}
FPS operator>>(int sz) const {
if ((int)this->size() <= sz) return {};
FPS ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
FPS operator<<=(int sz) {
assert(sz >= 0);
this->insert(this->begin(), sz, mint(0));
return *this;
}
FPS operator<<(int sz) const {
FPS ret(*this);
ret.insert(ret.begin(), sz, mint(0));
return ret;
}
FPS diff() const {
const int n = (int)this->size();
FPS ret(max(0, n - 1));
mint one(1), coeff(1);
for (int i = 1; i < n; i++) {
ret[i - 1] = (*this)[i] * coeff;
coeff += one;
}
return ret;
}
FPS integral() const {
const int n = (int)this->size();
FPS ret(n + 1);
ret[0] = mint(0);
if (n > 0) ret[1] = mint(1);
auto mod = mint::get_mod();
for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
return ret;
}
mint eval(mint x) const {
mint r = 0, w = 1;
for (auto &v : *this) r += w * v, w *= x;
return r;
}
FPS log(int deg = -1) const {
assert((*this)[0] == mint(1));
if (deg == -1) deg = (int)this->size();
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
FPS pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
if (k == 0) {
FPS ret(deg);
if (deg) ret[0] = 1;
return ret;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != mint(0)) {
mint rev = mint(1) / (*this)[i];
FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
ret *= (*this)[i].pow(k);
ret = (ret << (i * k)).pre(deg);
if ((int)ret.size() < deg) ret.resize(deg, mint(0));
return ret;
}
if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
}
return FPS(deg, mint(0));
}
static void *ntt_ptr;
static void set_ntt();
FPS &operator*=(const FPS &r);
FPS middle_product(const FPS &r) const;
void ntt();
void intt();
void ntt_doubling();
static int ntt_root();
FPS inv(int deg = -1) const;
FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;
#line 4 "fps/prefix-sum-of-polynomial.hpp"
// g(n)=sum_{i=0}^{n}f(i)
template <class mint>
FormalPowerSeries<mint> PrefixSumOfPolynomial(FormalPowerSeries<mint> f) {
if (f.empty()) return {};
using fact = Factorial<mint>;
mint c = f[0];
int d = f.size();
fact::reserve(d);
for (int i = 0; i < d; i++) f[i] *= fact::fact(i);
reverse(f.begin(), f.end());
FormalPowerSeries<mint> g(d);
for (int i = 0; i < d; i++) g[i] = fact::fact_inv(i + 1) * (i & 1 ? -1 : 1);
f *= g.inv();
f.resize(d);
f.push_back(c);
reverse(f.begin(), f.end());
for (int i = 1; i <= d; i++) f[i] *= fact::fact_inv(i);
return f;
}
/**
* @brief 多項式の Prefix Sum
* @docs docs/fps/prefix-sum-of-polynomial.md
*/