有名数列
(fps/famous-sequences.hpp)
- View this file on GitHub
- Last update: 2025-11-06 12:30:44+09:00
- Include:
#include "fps/famous-sequences.hpp"
分割数
非負整数 $n$ の分割数 $p_n$ とは,$n$ をいくつかの正整数の和(順序を区別しない)で表す方法の数.
母関数は $\prod_{k=1}^{\infty}\frac{1}{1-x^k}$ である.
オイラーの五角数定理より \(\prod_{k=1}^{\infty}(1-x^k)=\sum_{k=-\infty}^{\infty}(-1)^kx^{k(3k-1)/2}\) であることを用いれば $O(N\log N)$ 時間で $p_0,p_1,\dots,p_N$ が列挙できる.
ベル数
$n$ 元集合を空でない部分集合に分割する方法の数 $B_n$ をベル数という. 指数型母関数が下のように計算できる. \(\sum_{n}\frac{B_n}{n!}x^n =\prod_{i=1}^{\infty}\sum_{j=0}^{\infty}\frac{1}{(i!)^jj!}x^{ij} =\prod_{i=1}^{\infty}\exp\left(\frac{x^i}{i!}\right) =\exp\left(\sum_{i=1}^{\infty}\frac{x^i}{i!}\right) =\exp(e^x-1)\)
モンモール数
長さ $n$ の撹乱順列,すなわち $(1,2,\dots,n)$ の順列 $(p_1,p_2,\dots,p_n)$ で $p_i\neq i$ を満たすものの個数.
$a_n$ とおくと $a_n=(n-1)(a_{n-1}+a_{n-2})$ であるから $O(n)$ 時間で列挙できる.
第一種スターリング数
$s(n,k)$ を以下で定める. \(x(x-1)\cdots(x-(n-1))=\sum_{k=0}^{n}s(n,k)x^k\)
$s(n,i)$ の $0\leq i\leq n$ での列挙が $O(n\log n)$ 時間でできる.
- 分割統治をするが,一方の結果を Taylor Shift すればもう一方の結果を得られる.
また \(\sum_{i,j}s(i,j)\frac{x^i}{i!}y^j=(1+x)^y=\exp(y\log(1+x))=\sum_{j}(\log(1+x))^j\frac{y^j}{j!}\) となるので $s(i,k)$ の $k\leq i\leq n$ での列挙が $O((n-k)\log (n-k))$ 時間でできる.
第二種スターリング数
$S(n,k)$ を以下で定める. \(x^n=\sum_{k=0}^{n}S(n,k)x(x-1)\cdots(x-(k-1))\)
整数 $i$ について $x=i$ としたとき \(i^n=i![y^i]\left(\sum_{k=0}^{n}S(n,k)y^k\right)e^y\) と表示できるので \(\sum_{k=0}^{n}S(n,k)y^k=e^{-y}\left(\sum_{i=0}^{\infty}\frac{i^n}{i!}y^i\right)\) であり,$S(n,i)$ の $0\leq i\leq n$ での列挙が $O(n\log n)$ 時間でできる. また \(\sum_{i=0}^{\infty}\frac{i^n}{i!}y^i=n![x^n]\sum_{i=0}^{\infty}\frac{e^{ix}}{i!}y^i=n![x^n]\exp(e^xy)\) より \(\sum_{n,k}S(n,k)\frac{x^n}{n!}y^k=\exp((e^x-1)y)=\sum_{i\geq 0}(e^x-1)^i\frac{y^i}{i!}\) となるので $S(i,k)$ の $k\leq i\leq n$ での列挙が $O((n-k)\log (n-k))$ 時間でできる.
Depends on
fps/formal-power-series.hpp
Taylor Shift
(fps/taylor-shift.hpp)
LPF Table
(math/lpf-table.hpp)
階乗, 二項係数
(modint/factorial.hpp)
Power Table
(modint/power-table.hpp)
Verified with
verify/fps/LC_bell_number.test.cpp
verify/fps/LC_montmort_number_mod.test.cpp
verify/fps/LC_partition_function.test.cpp
verify/fps/LC_stirling_number_of_the_first_kind.test.cpp
verify/fps/LC_stirling_number_of_the_first_kind_fixed_k.test.cpp
verify/fps/LC_stirling_number_of_the_second_kind.test.cpp
verify/fps/LC_stirling_number_of_the_second_kind_fixed_k.test.cpp
Code
#pragma once
#include "modint/factorial.hpp"
#include "modint/power-table.hpp"
#include "fps/formal-power-series.hpp"
#include "fps/taylor-shift.hpp"
template <class mint>
FormalPowerSeries<mint> PartitionFunction(int n) {
FormalPowerSeries<mint> g(n + 1);
for (int k = 0; k * (3 * k - 1) / 2 <= n; k++) g[k * (3 * k - 1) / 2] += k & 1 ? -1 : 1;
for (int k = 1; k * (3 * k + 1) / 2 <= n; k++) g[k * (3 * k + 1) / 2] += k & 1 ? -1 : 1;
return g.inv(n + 1);
}
template <class mint>
FormalPowerSeries<mint> BellNumber(int n) {
using fact = Factorial<mint>;
FormalPowerSeries<mint> f(n + 1);
for (int i = 1; i < f.size(); i++) f[i] = fact::fact_inv(i);
f = f.exp();
for (int i = 0; i < f.size(); i++) f[i] *= fact::fact(i);
return f;
}
template <class mint>
vector<mint> MontmortNumber(int n) {
vector<mint> f(n + 1);
f[0] = 1, f[1] = 0;
for (int i = 2; i < f.size(); i++) f[i] = (i - 1) * (f[i - 1] + f[i - 2]);
return f;
}
template <class mint>
FormalPowerSeries<mint> FirstKindStirlingNumbers(int n) {
FormalPowerSeries<mint> f{1};
for (int l = 30; l >= 0; l--) {
if (f.size() > 1) f *= TaylorShift(f, mint(-(n >> (l + 1))));
if ((n >> l) & 1) f = (f << 1) - f * mint((n >> l) - 1);
}
return f;
}
template <class mint>
FormalPowerSeries<mint> FirstKindStirlingNumbersFixedK(int n, int k) {
using fact = Factorial<mint>;
if (k > n) return FormalPowerSeries<mint>{};
FormalPowerSeries<mint> f(n - k + 1);
for (int i = 0; i < f.size(); i++) f[i] = fact::inv(i + 1) * (i & 1 ? -1 : 1);
f = f.pow(k);
f *= fact::fact_inv(k);
for (int i = 0; i < f.size(); i++) f[i] *= fact::fact(i + k);
return f;
}
template <class mint>
FormalPowerSeries<mint> SecondKindStirlingNumbers(int n) {
using fact = Factorial<mint>;
FormalPowerSeries<mint> f(n + 1);
for (int i = 0; i < f.size(); i++) f[i] = fact::fact_inv(i) * (i & 1 ? -1 : 1);
FormalPowerSeries<mint> g(PowerTable<mint>(n, n));
for (int i = 0; i < g.size(); i++) g[i] *= fact::fact_inv(i);
f *= g;
f.resize(n + 1);
return f;
}
template <class mint>
FormalPowerSeries<mint> SecondKindStirlingNumbersFixedK(int n, int k) {
using fact = Factorial<mint>;
if (k > n) return FormalPowerSeries<mint>{};
FormalPowerSeries<mint> f(n - k + 1);
for (int i = 0; i < f.size(); i++) f[i] = fact::fact_inv(i + 1);
f = f.pow(k);
f *= fact::fact_inv(k);
for (int i = 0; i < f.size(); i++) f[i] *= fact::fact(i + k);
return f;
}
/**
* @brief 有名数列
* @docs docs/fps/famous-sequences.md
*/#line 2 "modint/factorial.hpp"
template <class mint>
struct Factorial {
static void reserve(int n) {
inv(n);
fact(n);
fact_inv(n);
}
static mint inv(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({0, 1});
assert(n != 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({0, 1});
}
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size(), q = (mod + k - 1) / k;
buf.push_back(q * buf[k * q - mod]);
}
return buf[n];
}
static mint fact(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({1, 1});
assert(n >= 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({1, 1});
}
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size();
buf.push_back(buf.back() * k);
}
return buf[n];
}
static mint fact_inv(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({1, 1});
assert(n >= 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({1, 1});
}
if ((int)buf.size() <= n) inv(n);
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size();
buf.push_back(buf.back() * inv(k));
}
return buf[n];
}
static mint binom(int n, int r) {
if (r < 0 || r > n) return 0;
return fact(n) * fact_inv(r) * fact_inv(n - r);
}
static mint binom_naive(int n, int r) {
if (r < 0 || r > n) return 0;
mint res = fact_inv(r);
for (int i = 0; i < r; i++) res *= n - i;
return res;
}
static mint multinom(const vector<int>& r) {
int n = 0;
for (auto& x : r) {
if (x < 0) return 0;
n += x;
}
mint res = fact(n);
for (auto& x : r) res *= fact_inv(x);
return res;
}
static mint P(int n, int r) {
if (r < 0 || r > n) return 0;
return fact(n) * fact_inv(n - r);
}
// partition n items to r groups (allow empty group)
static mint H(int n, int r) {
if (n < 0 || r < 0) return 0;
return r == 0 ? 1 : binom(n + r - 1, r);
}
};
/**
* @brief 階乗, 二項係数
*/
#line 2 "math/lpf-table.hpp"
vector<int> LPFTable(int n) {
vector<int> lpf(n + 1, 0);
iota(lpf.begin(), lpf.end(), 0);
for (int p = 2; p * p <= n; p += (p & 1) + 1) {
if (lpf[p] != p) continue;
for (int i = p * p; i <= n; i += p)
if (lpf[i] == i) lpf[i] = p;
}
return lpf;
}
/**
* @brief LPF Table
*/
#line 3 "modint/power-table.hpp"
// 0^k,1^k,2^k,...,n^k
template <class T>
vector<T> PowerTable(int n, int k) {
assert(k >= 0);
vector<T> f;
if (k == 0) {
f = vector<T>(n + 1, 0);
f[0] = 1;
} else {
f = vector<T>(n + 1, 1);
f[0] = 0;
auto lpf = LPFTable(n);
for (int i = 2; i <= n; i++)
f[i] = lpf[i] == i ? T(i).pow(k) : f[i / lpf[i]] * f[lpf[i]];
}
return f;
}
/**
* @brief Power Table
*/
#line 2 "fps/formal-power-series.hpp"
template <class mint>
struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using FPS = FormalPowerSeries;
FormalPowerSeries(const vector<mint>& r) : vector<mint>(r) {}
FormalPowerSeries(vector<mint>&& r) : vector<mint>(std::move(r)) {}
FPS& operator=(const vector<mint>& r) {
vector<mint>::operator=(r);
return *this;
}
FPS& operator+=(const FPS& r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
FPS& operator+=(const mint& r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
FPS& operator-=(const FPS& r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
return *this;
}
FPS& operator-=(const mint& r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
FPS& operator*=(const mint& v) {
for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
return *this;
}
FPS& operator/=(const FPS& r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
if ((int)r.size() <= 64) {
FPS f(*this), g(r);
g.shrink();
mint coeff = g.at(g.size() - 1).inv();
for (auto& x : g) x *= coeff;
int deg = (int)f.size() - (int)g.size() + 1;
int gs = g.size();
FPS quo(deg);
for (int i = deg - 1; i >= 0; i--) {
quo[i] = f[i + gs - 1];
for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
}
*this = quo * coeff;
this->resize(n, mint(0));
return *this;
}
return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
}
FPS& operator%=(const FPS& r) {
*this -= *this / r * r;
shrink();
return *this;
}
FPS operator+(const FPS& r) const { return FPS(*this) += r; }
FPS operator+(const mint& v) const { return FPS(*this) += v; }
FPS operator-(const FPS& r) const { return FPS(*this) -= r; }
FPS operator-(const mint& v) const { return FPS(*this) -= v; }
FPS operator*(const FPS& r) const { return FPS(*this) *= r; }
FPS operator*(const mint& v) const { return FPS(*this) *= v; }
FPS operator/(const FPS& r) const { return FPS(*this) /= r; }
FPS operator%(const FPS& r) const { return FPS(*this) %= r; }
FPS operator-() const {
FPS ret(this->size());
for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
void shrink() {
while (this->size() && this->back() == mint(0)) this->pop_back();
}
FPS rev() const {
FPS ret(*this);
reverse(begin(ret), end(ret));
return ret;
}
FPS dot(FPS r) const {
FPS ret(min(this->size(), r.size()));
for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
FPS pre(int sz) const {
return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));
}
FPS operator>>=(int sz) {
assert(sz >= 0);
if ((int)this->size() <= sz)
this->clear();
else
this->erase(this->begin(), this->begin() + sz);
return *this;
}
FPS operator>>(int sz) const {
if ((int)this->size() <= sz) return {};
FPS ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
FPS operator<<=(int sz) {
assert(sz >= 0);
this->insert(this->begin(), sz, mint(0));
return *this;
}
FPS operator<<(int sz) const {
FPS ret(*this);
ret.insert(ret.begin(), sz, mint(0));
return ret;
}
FPS diff() const {
const int n = (int)this->size();
FPS ret(max(0, n - 1));
mint one(1), coeff(1);
for (int i = 1; i < n; i++) {
ret[i - 1] = (*this)[i] * coeff;
coeff += one;
}
return ret;
}
FPS integral() const {
const int n = (int)this->size();
FPS ret(n + 1);
ret[0] = mint(0);
if (n > 0) ret[1] = mint(1);
auto mod = mint::get_mod();
for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
return ret;
}
mint eval(mint x) const {
mint r = 0, w = 1;
for (auto& v : *this) r += w * v, w *= x;
return r;
}
FPS log(int deg = -1) const {
assert((*this)[0] == mint(1));
if (deg == -1) deg = (int)this->size();
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
FPS pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
if (k == 0) {
FPS ret(deg);
if (deg) ret[0] = 1;
return ret;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != mint(0)) {
mint rev = mint(1) / (*this)[i];
FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
ret *= (*this)[i].pow(k);
ret = (ret << (i * k)).pre(deg);
if ((int)ret.size() < deg) ret.resize(deg, mint(0));
return ret;
}
if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
}
return FPS(deg, mint(0));
}
static void* ntt_ptr;
static void set_ntt();
FPS& operator*=(const FPS& r);
FPS middle_product(const FPS& r) const;
void ntt();
void intt();
void ntt_doubling();
static int ntt_root();
FPS inv(int deg = -1) const;
FPS exp(int deg = -1) const;
};
template <typename mint>
void* FormalPowerSeries<mint>::ntt_ptr = nullptr;
#line 4 "fps/taylor-shift.hpp"
// f(x+a)
template <class mint>
FormalPowerSeries<mint> TaylorShift(FormalPowerSeries<mint> f, mint a) {
using fps = FormalPowerSeries<mint>;
int n = f.size();
using fact = Factorial<mint>;
fact::reserve(n);
for (int i = 0; i < n; i++) f[i] *= fact::fact(i);
reverse(f.begin(), f.end());
fps g(n, mint(1));
for (int i = 1; i < n; i++) g[i] = g[i - 1] * a * fact::inv(i);
f = (f * g).pre(n);
reverse(f.begin(), f.end());
for (int i = 0; i < n; i++) f[i] *= fact::fact_inv(i);
return f;
}
/**
* @brief Taylor Shift
* @docs docs/fps/taylor-shift.md
*/
#line 6 "fps/famous-sequences.hpp"
template <class mint>
FormalPowerSeries<mint> PartitionFunction(int n) {
FormalPowerSeries<mint> g(n + 1);
for (int k = 0; k * (3 * k - 1) / 2 <= n; k++) g[k * (3 * k - 1) / 2] += k & 1 ? -1 : 1;
for (int k = 1; k * (3 * k + 1) / 2 <= n; k++) g[k * (3 * k + 1) / 2] += k & 1 ? -1 : 1;
return g.inv(n + 1);
}
template <class mint>
FormalPowerSeries<mint> BellNumber(int n) {
using fact = Factorial<mint>;
FormalPowerSeries<mint> f(n + 1);
for (int i = 1; i < f.size(); i++) f[i] = fact::fact_inv(i);
f = f.exp();
for (int i = 0; i < f.size(); i++) f[i] *= fact::fact(i);
return f;
}
template <class mint>
vector<mint> MontmortNumber(int n) {
vector<mint> f(n + 1);
f[0] = 1, f[1] = 0;
for (int i = 2; i < f.size(); i++) f[i] = (i - 1) * (f[i - 1] + f[i - 2]);
return f;
}
template <class mint>
FormalPowerSeries<mint> FirstKindStirlingNumbers(int n) {
FormalPowerSeries<mint> f{1};
for (int l = 30; l >= 0; l--) {
if (f.size() > 1) f *= TaylorShift(f, mint(-(n >> (l + 1))));
if ((n >> l) & 1) f = (f << 1) - f * mint((n >> l) - 1);
}
return f;
}
template <class mint>
FormalPowerSeries<mint> FirstKindStirlingNumbersFixedK(int n, int k) {
using fact = Factorial<mint>;
if (k > n) return FormalPowerSeries<mint>{};
FormalPowerSeries<mint> f(n - k + 1);
for (int i = 0; i < f.size(); i++) f[i] = fact::inv(i + 1) * (i & 1 ? -1 : 1);
f = f.pow(k);
f *= fact::fact_inv(k);
for (int i = 0; i < f.size(); i++) f[i] *= fact::fact(i + k);
return f;
}
template <class mint>
FormalPowerSeries<mint> SecondKindStirlingNumbers(int n) {
using fact = Factorial<mint>;
FormalPowerSeries<mint> f(n + 1);
for (int i = 0; i < f.size(); i++) f[i] = fact::fact_inv(i) * (i & 1 ? -1 : 1);
FormalPowerSeries<mint> g(PowerTable<mint>(n, n));
for (int i = 0; i < g.size(); i++) g[i] *= fact::fact_inv(i);
f *= g;
f.resize(n + 1);
return f;
}
template <class mint>
FormalPowerSeries<mint> SecondKindStirlingNumbersFixedK(int n, int k) {
using fact = Factorial<mint>;
if (k > n) return FormalPowerSeries<mint>{};
FormalPowerSeries<mint> f(n - k + 1);
for (int i = 0; i < f.size(); i++) f[i] = fact::fact_inv(i + 1);
f = f.pow(k);
f *= fact::fact_inv(k);
for (int i = 0; i < f.size(); i++) f[i] *= fact::fact(i + k);
return f;
}
/**
* @brief 有名数列
* @docs docs/fps/famous-sequences.md
*/