Count Subset Sum
(fps/count-subset-sum.hpp)
- View this file on GitHub
- Last update: 2025-11-06 12:30:44+09:00
- Include:
#include "fps/count-subset-sum.hpp"
整数列 $A=(A_0,A_1,\dots,A_{M-1})$ が与えられる. $k=0,1,\dots,N$ に対して $\sum_{i\in I}A_i=k$ を満たす $I\subseteq{0,1,\dots,M-1}$ の個数を $O(N\log N)$ 時間で列挙する.
アルゴリズム
$\prod_{i}(1+x^{A_i})$ を $N$ 次まで計算できればよい. 以下のように変形する.
\[\prod_{i}(1+x^{A_i})=\exp\left(\log\prod_{i}(1+x^{A_i})\right)=\exp\left(\sum_{i}\log(1+x^{A_i})\right)\]$\log(1+x^{A_i})$ は $A_i$ の倍数次の項だけをもつので,$\exp$ の中身は調和級数の議論で $O(N\log N)$ 時間で計算できる.
Depends on
Verified with
Code
#pragma once
#include "modint/factorial.hpp"
#include "fps/formal-power-series.hpp"
// #{ I | sum[i in I]a[i] = k } for k=0,1,...,n
template <class mint>
FormalPowerSeries<mint> CountSubsetSum(vector<int> a, int n) {
using fact = Factorial<mint>;
using fps = FormalPowerSeries<mint>;
vector<int> c(n + 1, 0);
for (auto v : a)
if (0 <= v && v <= n) c[v]++;
FormalPowerSeries<mint> f(n + 1, 0);
for (int i = 1; i <= n; i++) {
if (c[i] == 0) continue;
mint s = c[i];
for (int j = 1; i * j <= n; j++) {
f[i * j] += s * fact::inv(j);
s = -s;
}
}
return f.exp();
}
/**
* @brief Count Subset Sum
* @docs docs/fps/count-subset-sum.md
*/#line 2 "modint/factorial.hpp"
template <class mint>
struct Factorial {
static void reserve(int n) {
inv(n);
fact(n);
fact_inv(n);
}
static mint inv(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({0, 1});
assert(n != 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({0, 1});
}
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size(), q = (mod + k - 1) / k;
buf.push_back(q * buf[k * q - mod]);
}
return buf[n];
}
static mint fact(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({1, 1});
assert(n >= 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({1, 1});
}
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size();
buf.push_back(buf.back() * k);
}
return buf[n];
}
static mint fact_inv(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({1, 1});
assert(n >= 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({1, 1});
}
if ((int)buf.size() <= n) inv(n);
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size();
buf.push_back(buf.back() * inv(k));
}
return buf[n];
}
static mint binom(int n, int r) {
if (r < 0 || r > n) return 0;
return fact(n) * fact_inv(r) * fact_inv(n - r);
}
static mint binom_naive(int n, int r) {
if (r < 0 || r > n) return 0;
mint res = fact_inv(r);
for (int i = 0; i < r; i++) res *= n - i;
return res;
}
static mint multinom(const vector<int>& r) {
int n = 0;
for (auto& x : r) {
if (x < 0) return 0;
n += x;
}
mint res = fact(n);
for (auto& x : r) res *= fact_inv(x);
return res;
}
static mint P(int n, int r) {
if (r < 0 || r > n) return 0;
return fact(n) * fact_inv(n - r);
}
// partition n items to r groups (allow empty group)
static mint H(int n, int r) {
if (n < 0 || r < 0) return 0;
return r == 0 ? 1 : binom(n + r - 1, r);
}
};
/**
* @brief 階乗, 二項係数
*/
#line 2 "fps/formal-power-series.hpp"
template <class mint>
struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using FPS = FormalPowerSeries;
FormalPowerSeries(const vector<mint>& r) : vector<mint>(r) {}
FormalPowerSeries(vector<mint>&& r) : vector<mint>(std::move(r)) {}
FPS& operator=(const vector<mint>& r) {
vector<mint>::operator=(r);
return *this;
}
FPS& operator+=(const FPS& r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
FPS& operator+=(const mint& r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
FPS& operator-=(const FPS& r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
return *this;
}
FPS& operator-=(const mint& r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
FPS& operator*=(const mint& v) {
for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
return *this;
}
FPS& operator/=(const FPS& r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
if ((int)r.size() <= 64) {
FPS f(*this), g(r);
g.shrink();
mint coeff = g.at(g.size() - 1).inv();
for (auto& x : g) x *= coeff;
int deg = (int)f.size() - (int)g.size() + 1;
int gs = g.size();
FPS quo(deg);
for (int i = deg - 1; i >= 0; i--) {
quo[i] = f[i + gs - 1];
for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
}
*this = quo * coeff;
this->resize(n, mint(0));
return *this;
}
return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
}
FPS& operator%=(const FPS& r) {
*this -= *this / r * r;
shrink();
return *this;
}
FPS operator+(const FPS& r) const { return FPS(*this) += r; }
FPS operator+(const mint& v) const { return FPS(*this) += v; }
FPS operator-(const FPS& r) const { return FPS(*this) -= r; }
FPS operator-(const mint& v) const { return FPS(*this) -= v; }
FPS operator*(const FPS& r) const { return FPS(*this) *= r; }
FPS operator*(const mint& v) const { return FPS(*this) *= v; }
FPS operator/(const FPS& r) const { return FPS(*this) /= r; }
FPS operator%(const FPS& r) const { return FPS(*this) %= r; }
FPS operator-() const {
FPS ret(this->size());
for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
void shrink() {
while (this->size() && this->back() == mint(0)) this->pop_back();
}
FPS rev() const {
FPS ret(*this);
reverse(begin(ret), end(ret));
return ret;
}
FPS dot(FPS r) const {
FPS ret(min(this->size(), r.size()));
for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
FPS pre(int sz) const {
return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));
}
FPS operator>>=(int sz) {
assert(sz >= 0);
if ((int)this->size() <= sz)
this->clear();
else
this->erase(this->begin(), this->begin() + sz);
return *this;
}
FPS operator>>(int sz) const {
if ((int)this->size() <= sz) return {};
FPS ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
FPS operator<<=(int sz) {
assert(sz >= 0);
this->insert(this->begin(), sz, mint(0));
return *this;
}
FPS operator<<(int sz) const {
FPS ret(*this);
ret.insert(ret.begin(), sz, mint(0));
return ret;
}
FPS diff() const {
const int n = (int)this->size();
FPS ret(max(0, n - 1));
mint one(1), coeff(1);
for (int i = 1; i < n; i++) {
ret[i - 1] = (*this)[i] * coeff;
coeff += one;
}
return ret;
}
FPS integral() const {
const int n = (int)this->size();
FPS ret(n + 1);
ret[0] = mint(0);
if (n > 0) ret[1] = mint(1);
auto mod = mint::get_mod();
for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
return ret;
}
mint eval(mint x) const {
mint r = 0, w = 1;
for (auto& v : *this) r += w * v, w *= x;
return r;
}
FPS log(int deg = -1) const {
assert((*this)[0] == mint(1));
if (deg == -1) deg = (int)this->size();
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
FPS pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
if (k == 0) {
FPS ret(deg);
if (deg) ret[0] = 1;
return ret;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != mint(0)) {
mint rev = mint(1) / (*this)[i];
FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
ret *= (*this)[i].pow(k);
ret = (ret << (i * k)).pre(deg);
if ((int)ret.size() < deg) ret.resize(deg, mint(0));
return ret;
}
if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
}
return FPS(deg, mint(0));
}
static void* ntt_ptr;
static void set_ntt();
FPS& operator*=(const FPS& r);
FPS middle_product(const FPS& r) const;
void ntt();
void intt();
void ntt_doubling();
static int ntt_root();
FPS inv(int deg = -1) const;
FPS exp(int deg = -1) const;
};
template <typename mint>
void* FormalPowerSeries<mint>::ntt_ptr = nullptr;
#line 4 "fps/count-subset-sum.hpp"
// #{ I | sum[i in I]a[i] = k } for k=0,1,...,n
template <class mint>
FormalPowerSeries<mint> CountSubsetSum(vector<int> a, int n) {
using fact = Factorial<mint>;
using fps = FormalPowerSeries<mint>;
vector<int> c(n + 1, 0);
for (auto v : a)
if (0 <= v && v <= n) c[v]++;
FormalPowerSeries<mint> f(n + 1, 0);
for (int i = 1; i <= n; i++) {
if (c[i] == 0) continue;
mint s = c[i];
for (int j = 1; i * j <= n; j++) {
f[i * j] += s * fact::inv(j);
s = -s;
}
}
return f.exp();
}
/**
* @brief Count Subset Sum
* @docs docs/fps/count-subset-sum.md
*/