逆関数
(fps/compositional-inv.hpp)
- View this file on GitHub
- Last update: 2025-10-25 18:30:13+09:00
- Include:
#include "fps/compositional-inv.hpp"
逆関数.
$[x^0]f(x)=0,[x^1]f(x)\neq 0$ を満たす FPS $f$ に対し,$f(g(x))=g(f(x))=x$ を満たす FPS $g$ が一意に存在し,$f$ の逆関数と呼ぶ.
$f$ の逆関数の先頭 $n$ 項を $O(n(\log n)^2)$ 時間で求める.
アルゴリズム
$f(x/c)$ の逆関数は $cg(x)$ であるから $[x^1]f(x)=1$ と仮定してよい.
Lagrange の反転公式により
\[[x^n]f(x)^i=\frac{i}{n}[x^{n-i}]\left(\frac{x}{g(x)}\right)^n\]である. power projection により $O(n\log n)$ 時間で $[x^n]f(x)^i$ が列挙でき,$G(x)=\left(\frac{x}{g(x)}\right)^n$ が求められる.
$[x^0]G(x)=1$ であるから $g(x)=x\exp\left(-\frac{1}{n}\log G(x)\right)$ とすれば $O(n\log n)$ 時間で $g$ が求められる.
Depends on
fps/formal-power-series.hpp
Power Projection
(fps/power-projection.hpp)
階乗, 二項係数
(modint/factorial.hpp)
Verified with
verify/fps/LC_compositional_inverse_of_formal_power_series.test.cpp
verify/fps/LC_compositional_inverse_of_formal_power_series_large.test.cpp
Code
#pragma once
#include "fps/formal-power-series.hpp"
#include "fps/power-projection.hpp"
#include "modint/factorial.hpp"
// [x^0]f=0,[x^1]f!=0
// find g s.t. f(g(x))=g(f(x))=x mod x^n
// O(n(log n)^2)
template <class mint>
FormalPowerSeries<mint> CompositionalInv(FormalPowerSeries<mint> f, int n = -1) {
if (n == -1) n = f.size();
assert(f[0] == 0 && f[1] != 0);
mint c = f[1], ci = c.inv();
using fact = Factorial<mint>;
mint p = 1;
for (int i = 1; i < f.size(); i++) f[i] *= (p *= ci);
auto g = PowerProjection(f, f, n, n);
f.resize(n);
reverse_copy(g.begin(), g.end(), f.begin());
for (int i = 1; i < n; i++) f[i] *= n * fact::inv(n - i);
f = (f.log() * (-fact::inv(n))).exp();
for (int i = n - 1; i > 0; i--) f[i] = f[i - 1] * ci;
f[0] = 0;
return f;
}
/**
* @brief 逆関数
* @docs docs/fps/compositional-inv.md
*/#line 2 "fps/formal-power-series.hpp"
template <class mint>
struct FormalPowerSeries : vector<mint> {
using vector<mint>::vector;
using FPS = FormalPowerSeries;
FPS &operator+=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] += r[i];
return *this;
}
FPS &operator+=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] += r;
return *this;
}
FPS &operator-=(const FPS &r) {
if (r.size() > this->size()) this->resize(r.size());
for (int i = 0; i < (int)r.size(); i++) (*this)[i] -= r[i];
return *this;
}
FPS &operator-=(const mint &r) {
if (this->empty()) this->resize(1);
(*this)[0] -= r;
return *this;
}
FPS &operator*=(const mint &v) {
for (int k = 0; k < (int)this->size(); k++) (*this)[k] *= v;
return *this;
}
FPS &operator/=(const FPS &r) {
if (this->size() < r.size()) {
this->clear();
return *this;
}
int n = this->size() - r.size() + 1;
if ((int)r.size() <= 64) {
FPS f(*this), g(r);
g.shrink();
mint coeff = g.at(g.size() - 1).inv();
for (auto &x : g) x *= coeff;
int deg = (int)f.size() - (int)g.size() + 1;
int gs = g.size();
FPS quo(deg);
for (int i = deg - 1; i >= 0; i--) {
quo[i] = f[i + gs - 1];
for (int j = 0; j < gs; j++) f[i + j] -= quo[i] * g[j];
}
*this = quo * coeff;
this->resize(n, mint(0));
return *this;
}
return *this = ((*this).rev().pre(n) * r.rev().inv(n)).pre(n).rev();
}
FPS &operator%=(const FPS &r) {
*this -= *this / r * r;
shrink();
return *this;
}
FPS operator+(const FPS &r) const { return FPS(*this) += r; }
FPS operator+(const mint &v) const { return FPS(*this) += v; }
FPS operator-(const FPS &r) const { return FPS(*this) -= r; }
FPS operator-(const mint &v) const { return FPS(*this) -= v; }
FPS operator*(const FPS &r) const { return FPS(*this) *= r; }
FPS operator*(const mint &v) const { return FPS(*this) *= v; }
FPS operator/(const FPS &r) const { return FPS(*this) /= r; }
FPS operator%(const FPS &r) const { return FPS(*this) %= r; }
FPS operator-() const {
FPS ret(this->size());
for (int i = 0; i < (int)this->size(); i++) ret[i] = -(*this)[i];
return ret;
}
void shrink() {
while (this->size() && this->back() == mint(0)) this->pop_back();
}
FPS rev() const {
FPS ret(*this);
reverse(begin(ret), end(ret));
return ret;
}
FPS dot(FPS r) const {
FPS ret(min(this->size(), r.size()));
for (int i = 0; i < (int)ret.size(); i++) ret[i] = (*this)[i] * r[i];
return ret;
}
FPS pre(int sz) const {
return FPS(begin(*this), begin(*this) + min((int)this->size(), sz));
}
FPS operator>>=(int sz) {
assert(sz >= 0);
if ((int)this->size() <= sz) return {};
this->erase(this->begin(), this->begin() + sz);
return *this;
}
FPS operator>>(int sz) const {
if ((int)this->size() <= sz) return {};
FPS ret(*this);
ret.erase(ret.begin(), ret.begin() + sz);
return ret;
}
FPS operator<<=(int sz) {
assert(sz >= 0);
this->insert(this->begin(), sz, mint(0));
return *this;
}
FPS operator<<(int sz) const {
FPS ret(*this);
ret.insert(ret.begin(), sz, mint(0));
return ret;
}
FPS diff() const {
const int n = (int)this->size();
FPS ret(max(0, n - 1));
mint one(1), coeff(1);
for (int i = 1; i < n; i++) {
ret[i - 1] = (*this)[i] * coeff;
coeff += one;
}
return ret;
}
FPS integral() const {
const int n = (int)this->size();
FPS ret(n + 1);
ret[0] = mint(0);
if (n > 0) ret[1] = mint(1);
auto mod = mint::get_mod();
for (int i = 2; i <= n; i++) ret[i] = (-ret[mod % i]) * (mod / i);
for (int i = 0; i < n; i++) ret[i + 1] *= (*this)[i];
return ret;
}
mint eval(mint x) const {
mint r = 0, w = 1;
for (auto &v : *this) r += w * v, w *= x;
return r;
}
FPS log(int deg = -1) const {
assert((*this)[0] == mint(1));
if (deg == -1) deg = (int)this->size();
return (this->diff() * this->inv(deg)).pre(deg - 1).integral();
}
FPS pow(int64_t k, int deg = -1) const {
const int n = (int)this->size();
if (deg == -1) deg = n;
if (k == 0) {
FPS ret(deg);
if (deg) ret[0] = 1;
return ret;
}
for (int i = 0; i < n; i++) {
if ((*this)[i] != mint(0)) {
mint rev = mint(1) / (*this)[i];
FPS ret = (((*this * rev) >> i).log(deg) * k).exp(deg);
ret *= (*this)[i].pow(k);
ret = (ret << (i * k)).pre(deg);
if ((int)ret.size() < deg) ret.resize(deg, mint(0));
return ret;
}
if (__int128_t(i + 1) * k >= deg) return FPS(deg, mint(0));
}
return FPS(deg, mint(0));
}
static void *ntt_ptr;
static void set_ntt();
FPS &operator*=(const FPS &r);
FPS middle_product(const FPS &r) const;
void ntt();
void intt();
void ntt_doubling();
static int ntt_root();
FPS inv(int deg = -1) const;
FPS exp(int deg = -1) const;
};
template <typename mint>
void *FormalPowerSeries<mint>::ntt_ptr = nullptr;
#line 2 "modint/factorial.hpp"
template <class mint>
struct Factorial {
static void reserve(int n) {
inv(n);
fact(n);
fact_inv(n);
}
static mint inv(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({0, 1});
assert(n != 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({0, 1});
}
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size(), q = (mod + k - 1) / k;
buf.push_back(q * buf[k * q - mod]);
}
return buf[n];
}
static mint fact(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({1, 1});
assert(n >= 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({1, 1});
}
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size();
buf.push_back(buf.back() * k);
}
return buf[n];
}
static mint fact_inv(int n) {
static long long mod = mint::get_mod();
static vector<mint> buf({1, 1});
assert(n >= 0);
if (mod != mint::get_mod()) {
mod = mint::get_mod();
buf = vector<mint>({1, 1});
}
if ((int)buf.size() <= n) inv(n);
while ((int)buf.capacity() <= n) buf.reserve(buf.capacity() * 2);
while ((int)buf.size() <= n) {
long long k = buf.size();
buf.push_back(buf.back() * inv(k));
}
return buf[n];
}
static mint binom(int n, int r) {
if (r < 0 || r > n) return 0;
return fact(n) * fact_inv(r) * fact_inv(n - r);
}
static mint binom_naive(int n, int r) {
if (r < 0 || r > n) return 0;
mint res = fact_inv(r);
for (int i = 0; i < r; i++) res *= n - i;
return res;
}
static mint multinom(const vector<int>& r) {
int n = 0;
for (auto& x : r) {
if (x < 0) return 0;
n += x;
}
mint res = fact(n);
for (auto& x : r) res *= fact_inv(x);
return res;
}
static mint P(int n, int r) {
if (r < 0 || r > n) return 0;
return fact(n) * fact_inv(n - r);
}
// partition n items to r groups (allow empty group)
static mint H(int n, int r) {
if (n < 0 || r < 0) return 0;
return r == 0 ? 1 : binom(n + r - 1, r);
}
};
/**
* @brief 階乗, 二項係数
*/
#line 4 "fps/power-projection.hpp"
// transpose of composition
// [x^0]f(x^{-1})g(x)^i, i=0,...,n-1
// O(n(log n)^2)
template <class mint>
FormalPowerSeries<mint> TransposedComposition(FormalPowerSeries<mint> f, FormalPowerSeries<mint> g, int n) {
if (g[0] != 0) {
mint c = g[0];
g[0] = 0;
auto h1 = TransposedComposition(f, g, n);
using fact = Factorial<mint>;
for (int i = 0; i < n; i++) h1[i] *= fact::fact_inv(i);
FormalPowerSeries<mint> h2(n);
h2[0] = 1;
for (int i = 1; i < n; i++) h2[i] = h2[i - 1] * c;
for (int i = 0; i < n; i++) h2[i] *= fact::fact_inv(i);
h1 *= h2;
h1.resize(n);
for (int i = 0; i < n; i++) h1[i] *= fact::fact(i);
return h1;
}
int k = 1;
while (k < f.size() || k < n) k <<= 1;
int l = 1, m = 2 * k * l;
FormalPowerSeries<mint> P(m), Q(m);
for (int i = 0; i < f.size(); i++) P[k - 1 - i] = f[i];
for (int i = 0; i < g.size() && i < k; i++) Q[i] = -g[i];
int log = __builtin_ctz((unsigned int)m);
mint wi = mint(FormalPowerSeries<mint>::ntt_root()).inv().pow((mint::get_mod() - 1) >> (log + 1));
vector<int> rev(m);
for (int i = 0; i < rev.size(); i++) rev[i] = (rev[i / 2] / 2) | ((i & 1) << (log - 1));
vector<mint> pow(m, 1);
for (int i = 1; i < m; i++) pow[rev[i]] = pow[rev[i - 1]] * wi;
mint inv2 = mint(2).inv();
while (k > 1) {
P.resize(2 * m), P.ntt();
Q.resize(2 * m), Q.ntt();
for (int i = 0; i < m; i++) {
mint b = (i >> (log - 1)) == 0 ? 1 : -1;
int j = i << 1;
P[i] = pow[i] * (P[j] * (Q[j ^ 1] + b) - P[j ^ 1] * (Q[j] + b)) * inv2;
Q[i] = Q[j] * Q[j ^ 1] + (Q[j] + Q[j ^ 1]) * b;
}
P.resize(m), P.intt();
Q.resize(m), Q.intt();
k >>= 1, l <<= 1;
for (int i = k; i < k * 2; i++)
for (int j = 0; j < l; j++) {
P[i + j * k * 2] = 0;
Q[i + j * k * 2] = 0;
}
}
FormalPowerSeries<mint> P1(n);
for (int i = 0; i < n; i++) P1[i] = P[(l - 1 - i) * 2];
return P1;
}
// [x^k]f(x)g(x)^0,...,f(x)g(x)^(n-1)
// O((n+k)log^2(n+k))
template <class mint>
vector<mint> PowerProjection(FormalPowerSeries<mint> f, FormalPowerSeries<mint> g, int k, int n) {
assert(n >= 0 && k >= 0);
if (n == 0) return {};
f.resize(k + 1);
f = f.rev();
return TransposedComposition(f, g, n);
}
/**
* @brief Power Projection
* @docs docs/fps/power-projection.md
*/
#line 5 "fps/compositional-inv.hpp"
// [x^0]f=0,[x^1]f!=0
// find g s.t. f(g(x))=g(f(x))=x mod x^n
// O(n(log n)^2)
template <class mint>
FormalPowerSeries<mint> CompositionalInv(FormalPowerSeries<mint> f, int n = -1) {
if (n == -1) n = f.size();
assert(f[0] == 0 && f[1] != 0);
mint c = f[1], ci = c.inv();
using fact = Factorial<mint>;
mint p = 1;
for (int i = 1; i < f.size(); i++) f[i] *= (p *= ci);
auto g = PowerProjection(f, f, n, n);
f.resize(n);
reverse_copy(g.begin(), g.end(), f.begin());
for (int i = 1; i < n; i++) f[i] *= n * fact::inv(n - i);
f = (f.log() * (-fact::inv(n))).exp();
for (int i = n - 1; i > 0; i--) f[i] = f[i - 1] * ci;
f[0] = 0;
return f;
}
/**
* @brief 逆関数
* @docs docs/fps/compositional-inv.md
*/