Max Flow
(flow/max-flow.hpp)
- View this file on GitHub
- Last update: 2025-10-17 21:43:09+09:00
- Include:
#include "flow/max-flow.hpp"
最大流問題を解く.
push-relabel algorithm により $n$ 頂点 $m$ 辺のとき $O(n^2m)$ 時間.
push-relabel algorithm (概要)
- preflow とは flow において各頂点で (流入量)≥(流出量) であることを許したもの.
- $\sum_{v\in V}f(v,u)-\sum_{v\in V}f(u,v)\geq 0$
- 頂点 $u$ の excess flow とは $e(u)=\sum_{v\in V}f(v,u)-\sum_{v\in V}f(u,v)$ のこと.
- 頂点 $u$ が overflow しているとは $e(u)\gt 0$ であること.
- height function $h:V\to\mathbb{N}$ は $h(s)=\lvert V\rvert,h(t)=0$ およびすべての残余辺 $(u,v)\in E_f$ に対し $h(u)\leq h(v)+1$ を満たすもの.
preflow を更新する push,height function を更新する relabel を組み合わせたアルゴリズム.
push
以下の条件を満たす残余辺 $(u,v)$ についての操作.
- $h(u)=h(v)+1$
- $c_f(u,v)\gt 0$
- $e(u)\gt 0$
Push(u, v):
df = min(e[u], c_f[u, v])
if (u, v) in E:
f[u, v] += df
else:
f[v, u] -= df
e[u] -= df
e[v] += df
push 後に $c_f(u,v)=0$ となる push を saturating push と呼ぶ.
relabel
$e(u)\gt 0$ かつ $(u,\forall v)\in E_f,h(u)\leq h(v)$ なる $u$ に対する操作.
Relabel(u):
h[u] = 1 + min(h[v] for (u, v) in E_f)
基本アルゴリズム
以下のアルゴリズムで最大フローが求められる.
GenericPushRelabel(G):
for v in V:
h[v] = 0
e[v] = 0
for (u, v) in E:
f[u, v] = 0
h(s) = |V|
for v in G[s]:
f[s, v] = c(s, v)
e[v] = c(s, v)
e[s] -= c(s, v)
while (push または relabel ができる):
(push または relabel を任意に選んで行う)
| 最大フローを返すこと,また停止して時間計算量が $O( | V | ^2 | E | )$ であることの証明は省略. |
push/relabel の操作順
GenericPushRelabel では push/relabel を行う順序に自由度がある.
| 順序を適切に決めることで $O( | V | ^3)$ 時間や $O( | V | ^2\sqrt{ | E | })$ 時間などになる. |
資料
- Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C. (2009) Introduction to Algorithms. The MIT Press. https://mitpress.mit.edu/9780262046305/introduction-to-algorithms/
- Push-Relabel による最大フローアルゴリズム - 宇宙ツイッタラーXの憂鬱
Depends on
Verified with
Code
#pragma once
#include "data-structure/simple-queue.hpp"
template <class Cap = long long>
struct MaxFlow {
public:
MaxFlow() : _n(0) {}
explicit MaxFlow(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap});
g[to].push_back(_edge{from, from_id, 0});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
}
vector<edge> edges() {
int m = int(pos.size());
vector<edge> result;
for (int i = 0; i < m; i++) {
result.push_back(get_edge(i));
}
return result;
}
void change_edge(int i, Cap new_cap, Cap new_flow) {
int m = int(pos.size());
assert(0 <= i && i < m);
assert(0 <= new_flow && new_flow <= new_cap);
auto& _e = g[pos[i].first][pos[i].second];
auto& _re = g[_e.to][_e.rev];
_e.cap = new_cap - new_flow;
_re.cap = new_flow;
}
Cap flow(int s, int t) {
return flow(s, t, numeric_limits<Cap>::max());
}
Cap flow(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
vector<int> level(_n), iter(_n);
SimpleQueue<int> que;
auto bfs = [&]() {
fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto& e : g[v]) {
if (e.cap == 0 || level[e.to] >= 0) continue;
level[e.to] = level[v] + 1;
if (e.to == t) return;
que.push(e.to);
}
}
};
auto dfs = [&](auto self, int v, Cap up) {
if (v == s) return up;
Cap res = 0;
int level_v = level[v];
for (int& i = iter[v]; i < int(g[v].size()); i++) {
_edge& e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
Cap d = self(self, e.to, min(up - res, g[e.to][e.rev].cap));
if (d <= 0) continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == up) return res;
}
level[v] = _n;
return res;
};
Cap flow = 0;
while (flow < flow_limit) {
bfs();
if (level[t] == -1) break;
fill(iter.begin(), iter.end(), 0);
Cap f = dfs(dfs, t, flow_limit - flow);
if (!f) break;
flow += f;
}
return flow;
}
vector<bool> min_cut(int s) {
vector<bool> visited(_n);
SimpleQueue<int> que;
que.push(s);
while (!que.empty()) {
int p = que.front();
que.pop();
visited[p] = true;
for (auto& e : g[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
};
vector<pair<int, int>> pos;
vector<vector<_edge>> g;
};
/**
* @brief Max Flow
* @docs docs/flow/max-flow.md
*/#line 2 "flow/max-flow.hpp"
#line 2 "data-structure/simple-queue.hpp"
template <class T>
struct SimpleQueue {
private:
vector<T> a;
int p;
public:
SimpleQueue() {}
SimpleQueue(int n) { a.reserve(n); }
void reserve(int n) { a.reserve(n); }
int size() { return a.size() - p; }
bool empty() { return a.size() == p; }
void push(const T& v) { a.push_back(v); }
T& front() { return a[p]; }
void pop() { p++; }
void clear() {
a.clear();
p = 0;
}
};
#line 4 "flow/max-flow.hpp"
template <class Cap = long long>
struct MaxFlow {
public:
MaxFlow() : _n(0) {}
explicit MaxFlow(int n) : _n(n), g(n) {}
int add_edge(int from, int to, Cap cap) {
assert(0 <= from && from < _n);
assert(0 <= to && to < _n);
assert(0 <= cap);
int m = int(pos.size());
pos.push_back({from, int(g[from].size())});
int from_id = int(g[from].size());
int to_id = int(g[to].size());
if (from == to) to_id++;
g[from].push_back(_edge{to, to_id, cap});
g[to].push_back(_edge{from, from_id, 0});
return m;
}
struct edge {
int from, to;
Cap cap, flow;
};
edge get_edge(int i) {
int m = int(pos.size());
assert(0 <= i && i < m);
auto _e = g[pos[i].first][pos[i].second];
auto _re = g[_e.to][_e.rev];
return edge{pos[i].first, _e.to, _e.cap + _re.cap, _re.cap};
}
vector<edge> edges() {
int m = int(pos.size());
vector<edge> result;
for (int i = 0; i < m; i++) {
result.push_back(get_edge(i));
}
return result;
}
void change_edge(int i, Cap new_cap, Cap new_flow) {
int m = int(pos.size());
assert(0 <= i && i < m);
assert(0 <= new_flow && new_flow <= new_cap);
auto& _e = g[pos[i].first][pos[i].second];
auto& _re = g[_e.to][_e.rev];
_e.cap = new_cap - new_flow;
_re.cap = new_flow;
}
Cap flow(int s, int t) {
return flow(s, t, numeric_limits<Cap>::max());
}
Cap flow(int s, int t, Cap flow_limit) {
assert(0 <= s && s < _n);
assert(0 <= t && t < _n);
assert(s != t);
vector<int> level(_n), iter(_n);
SimpleQueue<int> que;
auto bfs = [&]() {
fill(level.begin(), level.end(), -1);
level[s] = 0;
que.clear();
que.push(s);
while (!que.empty()) {
int v = que.front();
que.pop();
for (auto& e : g[v]) {
if (e.cap == 0 || level[e.to] >= 0) continue;
level[e.to] = level[v] + 1;
if (e.to == t) return;
que.push(e.to);
}
}
};
auto dfs = [&](auto self, int v, Cap up) {
if (v == s) return up;
Cap res = 0;
int level_v = level[v];
for (int& i = iter[v]; i < int(g[v].size()); i++) {
_edge& e = g[v][i];
if (level_v <= level[e.to] || g[e.to][e.rev].cap == 0) continue;
Cap d = self(self, e.to, min(up - res, g[e.to][e.rev].cap));
if (d <= 0) continue;
g[v][i].cap += d;
g[e.to][e.rev].cap -= d;
res += d;
if (res == up) return res;
}
level[v] = _n;
return res;
};
Cap flow = 0;
while (flow < flow_limit) {
bfs();
if (level[t] == -1) break;
fill(iter.begin(), iter.end(), 0);
Cap f = dfs(dfs, t, flow_limit - flow);
if (!f) break;
flow += f;
}
return flow;
}
vector<bool> min_cut(int s) {
vector<bool> visited(_n);
SimpleQueue<int> que;
que.push(s);
while (!que.empty()) {
int p = que.front();
que.pop();
visited[p] = true;
for (auto& e : g[p]) {
if (e.cap && !visited[e.to]) {
visited[e.to] = true;
que.push(e.to);
}
}
}
return visited;
}
private:
int _n;
struct _edge {
int to, rev;
Cap cap;
};
vector<pair<int, int>> pos;
vector<vector<_edge>> g;
};
/**
* @brief Max Flow
* @docs docs/flow/max-flow.md
*/